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Abstract—The self-force is a specific problem of self-consistent
Monte Carlo-Poisson simulation resulting in an un-physical
field component acting on a particle coming from the particle
itself (the self-force). Several approaches have been proposed in
literature to mitigate this problem, but all of them suffer to
some extent of approximations and/or limitations. In this paper
we propose a new and mathematically exact correction of the
self-force problem based on a numerical approach. Although
computationally expensive, it has no restriction and can be
always applied. The new method has been tested on the difficult
problem of plasma oscillation simulation providing the expected
plasma energy from theory. Moreover, the same mathematical
framework introduced here for the self-force correction can be
readily applied also for the exact calculation of the reference
force in the Particle-Particle-Particle-Mesh (P3M) method. The
accuracy of such approach to P3M method is demonstrated by
simulating the bulk low field mobility dependence on doping
concentration.

I. INTRODUCTION

Since the seminal work of Hockney and Eastwood [1] the
self-force (SF) problem has been recognized as a critical
problem for self-consistent Monte Carlo-Poisson simulation
(SC-MC-P). It arises from mixing point-like particles (charges)
with finite element solution of the Poisson Eq. for the poten-
tial/field profile. Typically, SC-MC-P includes the following
steps: 1) charge assignment to the mesh; 2) solution of the
Poisson Eq. for the potential; 3) interpolation of the resulting
electric field back to particle position. The problem stems from
the unavoidable displacement of the charge implicit in step 1)
and the approximation involved in step 3).

In order to understand the origin of the SF problem, we
can consider the simple case of a single particle with zero
initial velocity/energy and no external field (the so called
’lone’ particle case). Obviously, the particle should stay fixed
where it is, but this is not the case for SC-MC-P, as explained
in Fig. 1. Indeed, let’s consider for convenience the simplest
charge assignment method scheme at step 1), that is assigning
the particle charge to the nearest grid point (NGP). Then the
computed potential (solid line) will feature a finite deep at that
grid point (whose amplitude depends on the grid spacing), and
the corresponding field would be piece-wise constant (dotted
line). The key point to notice is that the computed field is not
zero at the particle position as it should be. Instead there is a
fictitious field acting on the particle due to the particle itself
that should not be there. This is caused by the displacement
of the computed potential profile on the mesh with respect
to the real one (Coulomb potential, dashed line) due to space
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Fig. 1. Schematic description of the SF origin for a single particle P. Correct
(Coulomb) potential: dashed line. Finite element solution of the Poisson Eq.
(solid line) and corresponding field profile (dotted line).

—

Fig. 2. Example of SC-MC-P simulation of the *lone’ particle case when the
SF problem is not corrected. Color level represents the particle kinetic energy
E} in eV.

discretization, and the interpolation of the electric field at the
particle position that is not able to resolve the symmetry of
the field around the particle position.

An example of such un-physical results is reported in Fig. 2.
A particle with no kinetic energy (FEj) has been placed on a
mesh node. Then a SC-MC-P simulation is carried out with
only this unique particle. Because of the SF problem, the par-
ticle starts to move around, attaining also a significant kinetic
energy, whereas it should stay fixed at the initial position.
Followed trajectory and gained energy are un-predictable as
they depend on the mesh topology, initial position, how often
the potential profile is updated and so on.
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Clearly this problem is present only in SC-MC-P simulation,
it worsens for decreasing mesh spacing, i.e mesh node distance
(Ax), and it is more impacting where the external field is low.

Several methods have been proposed in the literature to
mitigate the SF problem. Many of them are based on smoother
charge assignment schemes such as Cloud-in-Cell (CIC) [1],
nearest-element-center (NEC) [2], etc. Others, instead, are
based on more complex field interpolation [3]. However, all
of them suffer of some limitations, either imposing some
constraint on the mesh (e.g. uniform spacing, or no inter-
faces, or equilateral triangles [2]), either not guaranteeing the
consistency of potential and field, possibly leading to the not
conservation of both momentum and energy [1].

In this paper we introduce a new approach to solve the SF
problem in SC-MC-P simulation. It is based on a numerical
correction of the potential profile. Although it might be
computational expensive, it is mathematically exact, and does
not suffer of any of the above-mentioned limitations, and thus
can be generally applied.

Sect. II introduces the mathematical framework behind the
new correction, whose results are then discussed in Sect. III.
The same approach is leveraged in Sect. IV for an exact
implementation of the P3M method. Finally Sect. V draws
some conclusions.

II. EXACT SELE-FORCE CORRECTION

In principle, the SF can be avoided if the potential caused
by the i-th particle p; (¢;) is removed from the total potential
1. In practice, this can be done by applying to p; a corrected

cor

potential ¥{°" = 1 — ;. Here 9 is the solution of the Poisson
Eq. that, in case of point-like charges, can be written as

V- (~eV4) = q( 3 wid (7~ Fvcren) + Ne(®) ()

with boundary conditions

% = 1,  on electrodes 2
Z_:_pi = 0 on remaining boundary, (3)

where g is the elementary charge, € the dielectric constant,
N, is any charge described by a continuous profile (e.g.
doping), ¥y p(p,) is the nearest grid point to p;, and w; is its
statistical weight (with sign, i.e. positive for holes, negative
for electrons). The difficulty lies in identifying ;.

The new method we are proposing calculates ¢; nu-
merically, and, therefore, can be always applied, and it is
mathematically exact within the framework of finite element
calculation of %. To this purpose we follow the main idea in
[4]. We start by noticing that ¢/ can be written as

=1+ Z wiPNGp(p,)s 4)

where . is the solution of

V- (—€Vie) = gNe(T) &)
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Fig. 3. "Lone’ particle energy SC-MC-P 3D simulation results for different
mesh spacing Ax. Blue lines: no SF correction. Black lines: with exact SF
correction. The correct value should be 0.

with boundary conditions (2) and (3), and ®ncp(p,) is the
solution of

V- (=eVencrp)) = a0(F = Tnarpy)  (©)
with boundary conditions (3) and

®nepp) =0 on electrodes. (7

Notice that: i) this method is somehow different from [4]
because of the different form of (6) and the different boundary
condition represented by (7) (compare them to (4) and (5) in
[4] respectively); i) (7) is mandatory in order for (4) to be
true; iif) (7) sets a clear and unambiguous boundary condition
regardless of the device structure.

From (4) it is clear that

i = wiPncpp,)- (8)

The new method then requires to compute and store the
solution of (6) for all mesh nodes to be later used to correct
the potential on a particle basis. This can be computationally
expensive, but it can be speeded-up parallelizing the solution
of (6), that are all independent on each other. Moreover, it also
requires a lot of memory, but this is not a problem anymore
for modern computers with hundreds of GB of memory.

III. RESULTS AND DISCUSSION

First, we verified the new method on the case of the single
particle with zero initial energy/velocity. In this particular case,
v and ¢; coincide, except for the numerical error in their
calculation. Thus ¢{°" = 0 always, and, consequently, the
particle keeps its state. SC-MC-P 3D simulation results with
and without the new correction are reported in Fig. 3 for
different mesh spacing. Clearly, without any SF correction,
the particle energy rapidly diverges. Only for the larger mesh

spacing, the particle energy attains a finite value in the



range of hundreds of meV, which is anyway not acceptable
(the correct one should be 0). On the contrary, the new SF
correction always provides a particle energy below 10~ ¢V,
i.e. comparable with the numerical precision with which
and ¢; have been computed.

Next, we tested the new SF correction on the 3D simulation
of plasma oscillations. Plasma oscillations are a collective
motion of a gas of free electrical particles. Let’s consider
the simple case of a gas of free electrons of density n on a
uniform background of positive fixed charge. If an electron is
displaced from its equilibrium position even by a small amount
the Coulomb interaction with the other charges will tend to
pull it back, resulting in an oscillation around the equilibrium
configuration. These oscillations take place at a characteristics

frequency

nq2

m*e

Wwp =

where m* is the carrier effective mass. In this process, the
free electrons exchange energy with the Coulomb potential
resulting in an increased average kinetic energy (AE¢) with
respect to the thermal energy. Theory in [5] showed this extra
energy to be

1/2

1\’
1+ ( ) ] )
WpTm

where 1, is the momentum relaxation time due to the other
scattering mechanisms.

Plasma simulation is a very difficult task for SC-MC-P since
it requires very short time step between Poisson Eq. solution
(At < 1/wp) to capture the potential oscillation, and very
small grid spacing to accurately resolve the Coulomb force
among particles according to the Particle-Mesh (PM) scheme
[1]. We found that Az = 1/4/n is as good trade-off between
accuracy and computational time. Under these conditions SF
becomes very important and thus must be avoided. In the
simulation we adjust the size of the 3D cubic domain to
hold approximately 1000 electrons at all densities, resulting
in a mesh with =~ 70K nodes. In this case, calculation of all
®nep(p;) takes approximately half of the simulation time,
which is anyway dominated by the time spent solving (1),
and ~ 25GB of RAM.

Fig. 4 compares simulation results with and without the
new SF correction against the theoretical value. Without SF
correction the simulated average energy is much higher than
expected, while the new and exact SF correction provides a
good agreement with theory, demonstrating the validity of the
approach.

2, 1/3
AEs = 1.451‘14"

T€oo

IV. EXTENSION TO P3M METHOD

The calculation of ¢; (contribution of the particle p; to the
total potential 1) is also required in the implementation of the
Coulomb interaction among charges according to the Particle-
Particle-Particle-Mesh (P3M) method [1]. In order to allow the
use of coarser grid than needed by the PM method as discussed
in the previous section, in the P3M method the Coulomb force
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Fig. 4. Plasma energy simulation. Black line: theoretical value 1.5kpT +
AF. Blue triangles: no SF correction. Red squares: exact SF correction.

exchanged with surrounding charges is explicitly added to
the electric field acting on a particle. In this way, Coulomb
scattering with fixed dopants (impurity scattering) and with
other mobile carriers (electron-electron scattering) are not
treated anymore as explicit localized scattering events with
their own rates, but they are substituted by the continuous
interaction exchanged via the Coulomb force during particle
motion (a sort of molecular dynamics approach). However, in
order not to double count the interaction with surrounding
particles, since also included in the mesh potential, their
contribution to %, that in the framework of P3M is called
reference potential(force), must be removed [1], [6]-[8]. This
contribution is, by definition, the same as derived in Sect. II
and it is given again by (8). Therefore, in the P3M method,
the potential profile ’seen’ by the i-th particle, including also
the SF correction introduced in this paper, is

P3M _ oy 4 Z % Coulomb potential
5 Ame |75 — 73]

- Z wi®PNGP(p;) Reference potential
j#i
— wi®Nepp) SF correction. (10)

The accuracy of such approach is demonstrated by sim-
ulating the bulk low field mobility dependence on doping
(i.e. impurity) concentration. Usually, in the framework of
MC device simulation, impurity scattering is treated as any
other scattering mechanisms with its own scattering rate and
after scattering state selection rules, provided by a number
of models (Brook and Herring [9], Ridley [10], Conwell-
Weisskopf [11], Kosina [12]), that are all depending on the
doping concentration considered as a continuous profile. Of-
ten, these models have fitting parameters [13], as reproducing
low field mobility doping dependence is a difficult task for
MC.
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Fig. 5. Comparison of simulated low field electron bulk mobility in Silicon
(symbols) with the analytical Masetti model [15].

However, with the restless shrinking of device physical
dimension, nowadays only a few dopants are present in the
channel of MOS transistors, and even in the source/drain
extensions, mandating to treat them as discrete, and randomly
placed, fixed particles [14]. Therefore, the aforementioned
models cannot be applied anymore, whereas the P3M method
is particularly suited for this as it was designed to handle
Coulomb interaction with point-like particles.

SF correction and P3M method have been implemented
in our MC code (MC++), which was then used to simulate
the bulk low field mobility for several doping levels. These
simulations are very similar to the ones in the previous
section with the following differences: 1) background doping
is described here by discrete particles placed randomly (no
need to be located at mesh nodes though); 2) an external
low field (1K'V/em) is applied to induce a detectable average
drift velocity; 3) mesh spacing has been relaxed as allowed
by P3M and adapted to doping level to include in the 3D
simulation domain a large number of impurities in order to
reduce the statistical variability associated with the random
placement while keeping to a manageable level the number of
mesh nodes.

Results of such simulations are compared in Fig. 5 to the
reference Masetti model that is a good fit to experimental data
[15]. The agreement is quite good demonstrating the soundness
of P3M for this kind of problem, and the effectiveness of the
proposed implementation. It is worth noticing that: 1) in the
simulation of Fig. 5 there is no free parameter as the only
phenomenon at play is the Coulomb force; 2) SF correction is
again mandatory to get the correct kinetic energy and, hence,
velocity.

V. CONCLUSION

In this paper we have introduced a new method for the
correction of the self-force problem in SC-MC-P simulation.
This method is based on the identification of the contribution
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of each particle to the potential/field profile, so that it can
be easily removed from the driving forces of particle motion.
This operation is done numerically on the simulation mesh
and, although computationally expensive, is mathematically
exact within the framework of finite element calculation of
the potential profile, and it has no restriction. We demonstrated
its effectiveness by showing that this new method allows to
reproduce the average Kkinetic energy in plasma oscillation
simulation.

Moreover we have proposed to use the same approach also
to compute the reference force needed for the implementation
of the Coulomb interaction among point-like charges (either
fixed or mobile) via the P3M method. We verified the correct-
ness of this new approach to P3M by reproducing the electron
low field mobility dependence on doping concentration with
no fitting parameter.
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