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Abstract—Modeling of plasma waves in HEMTs by moments-
based transport models is investigated. The balance equations
are derived from the Boltzmann transport equation by projec-
tion onto Hermitian polynomials. The discretized equations are
stabilized by an approach based on matrix exponentials, which in
the case of the drift-diffusion model reproduces the Scharfetter-
Gummel stabilization. Simulations of a realistic HEMT show
that plasma instabilities are rather unlikely to occur and that
effects not considered by Dyakonov and Shur (e.g. real ohmic
contacts) strongly damp the THz waves. Furthermore, quasi-
ballistic transport can not be captured by higher-order models.

Index Terms—HEMT, plasma waves, drift-diffusion, Boltz-
mann transport equation, Scharfetter-Gummel stabilization

I. INTRODUCTION

Many promising high-frequency applications fall into the
so-called THz gap (0.3-3THz), for which only very power-
inefficient sources exist [1]. Dyakonov and Shur proposed THz
wave sources based on plasma instabilities in high electron
mobility transistors (HEMT), which might fill this gap [2], [3].
Due to an applied dc drain/source bias a current flows in the
channel and the plasma waves in the direction of the electron
flow (downstream) behave differently from the plasma waves
in the opposite direction (upstream). They assumed that the
ac electron density at the source-side of the channel is zero
and that the ac electron current at the drain-side vanishes.
These boundary conditions can lead to a plasma instability
and the generation of THz waves. For a HEMT in the common
source configuration these boundary conditions correspond to
an ac-shorted gate/source (input) port and open drain/source
(output) port. Since HEMTs with a negative differential output
resistance are in general not unconditionally stable, such a
configuration almost always leads to oscillations at rather
low frequencies [4]. Experimental verification of THz wave
generation by plasma instabilities is therefore difficult and
the experimental results are rather inconclusive. Furthermore,
the measured THz emissions are often barely above the black
body radiation (e.g. [5]). It is thus not clear whether plasma
instabilities can be used to generate THz waves or not and in
this paper we investigate the accuracy of the underlying theory
by device simulation.
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II. MODEL

The hydrodynamic modeling approach used by Dyakonov
and Shur is questionable for various reasons. Their model
based on the Euler and continuity equations is similar to a
drift-diffusion model which includes the convective derivative
and a time derivative in the constitutive equation for the elec-
tron current density [6]. It can be derived from the Boltzmann
transport equation (BTE) by taking the first two (velocity)
moments together with a closure relation based on a drifted
Maxwellian [7], [8]. This assumption holds only in the case
of strong scattering, whereas THz wave generation requires
extremely high mobilities and thus quasi-ballistic transport [2],
[3]. A quasi-ballistic distribution function in a device is very
different from a Maxwellian in the case of nonequilibrium
and it is not clear whether electron-electron scattering is
sufficiently strong to drive the distribution function towards a
Maxwellian on the required time and length scales. In addition,
the Maxwellian will be heated, a fact that was neglected
by Dyakonov and Shur and leads to a strong increase of
the channel resistance and damping of the plasma instability,
especially at high mobilities [9]. Moreover, the restriction to
two moments leads to a plasma dispersion relation with only
two branches, whereas the BTE yields in addition a continuum
of modes [10]. In order to capture the impact of the additional
modes, the differential equations should be solved in the
real space, which also allows to account for inhomogeneous
channels and parasitics. In addition, it is possible to apply
more realistic boundary conditions. The assumption of a drift-
diffusion model together with Dirichlet boundary conditions
at the source and drain terminals leads for high mobilities to
unrealistically large conductivities, which exceed the ballistic
limit for thermal bath boundary conditions. This can be at least
partially avoided by assuming a finite surface recombination
velocity (real ohmic contacts) [11].

In order to avoid some of the above mentioned problems, we
solve moments-based models of arbitrary order l for a realistic
2D device structure (Fig. 1). While the Poisson equation for
the quasi-stationary potential is solved in 2D, the electron
transport for the electron gas in the channel is assumed to be
1D (charge sheet approximation) [12]. The Poisson equation
is discretized by the finite volume method in conjunction
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with finite differences for the electric flux density [11]. On
the contacts Dirichlet boundary conditions are applied to
the potential, otherwise homogeneous Neumann boundary
conditions. The 1D transport models are derived from the
BTE by projection onto Hermitian polynomials assuming a
macroscopic relaxation time approximation for the scattering
integral and a parabolic band structure:
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e is the elementary charge, Ex(x, t) is the x component of
the electric field in the channel, m the effective mass, kBT0

the thermal energy and τ the macroscopic relaxation time
with µ = eτ/m. For the sake of simplicity τ is assumed
to be position independent. gn(x, t) is the nth moment of the
distribution function,
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where Hn(u) is the nth order Hermitian polynomial [13]. This
special type of distribution function is due to the assump-
tion of 1D transport in the real space and the macroscopic
relaxation time approximation for the scattering integral. The
electron density is proportional to the zeroth order component:
n(x, t) = NC/

√
π g0(x, t), and the electron current density

is given by: jx(x, t) = NC
√
kBT0/

√
2mπ g1(x, t), where

NC is the effective density of states of the conduction band.
The terminal currents are evaluated by the extended Ramo-
Shockley theorem [14].

In order to obtain a system of equations of finite size, the
expansion in (2) is truncated at maximum order l and all
components for n > l are assumed to be zero (gn>l(x, t) = 0).
This closure relation has the advantage that the equations
remain linear, but it can lead to stability problems for large
electric fields. For l = 1 the drift-diffusion model is obtained
without the convective derivative. To account for such trans-
port effects in a more rigorous manner, transport models with
a much larger l are solved (e.g. l = 9 ), where the convergence
of the expansion must be checked.

For a finite l the balance equations (1) for different n can
be aggregated into:
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g⃗(x, t) is the vector containing the l components. Â is a
constant l × l matrix and B̂ depends on the electric field.
A grid with N nodes xi is used for the channel. First, the
dc case is considered, for which (3) can be solved under the
assumption of a position independent Ĉi+ 1
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the interval [xi, xi+1] with the matrix exponential [15], where
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2
(x− xi+ 1

2
):

G⃗(x) = e
D̂

i+1
2
(x)

G⃗i+ 1
2

(4)

The vector G⃗ is split into even and odd components with G⃗ =
(G⃗T
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T
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T and the even components on the grid points are
given by:
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P̂ is a nonsquare matrix selecting the even components: G⃗e =
P̂ G⃗. On the grid nodes the fluxes must be continuous:
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This equation links the even components on the nodes i−1, i
and i + 1. For l = 1 the well known Scharfetter-Gummel
stabilization is obtained [16]. On the contacts a constant
surface recombination velocity is used. At the source this
yields:
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G⃗e,eq is the equilibrium solution and vs the surface recom-
bination velocity. With a corresponding boundary condition
for the drain a closed system of equations is obtained for the
even components, which can be solved self-consistently with
the Poisson equation by a Newton-Raphson method, where the
electron density for the Poisson equation is evaluated on the
grid nodes.

Small-signal analysis for the sinusoidal steady state con-
dition is straightforward. Equation (3) is linearized with
g⃗(x, t) = G⃗(x) + ℜ

{
g⃗(x)eiωt

}
and an expression for the

complex phasors g⃗, Ex is obtained:
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The matrix M̂ is given by an integral:
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The integral is evaluated by numerical means. Equation (9)
can be used to build a linear system of equations for the even
components of the small-signal solution similar to the dc case.
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III. SIMULATION RESULTS

A GaN HEMT similar to the one in Ref. [5] is investigated,
where instead of 2000 gates only three are considered. The
effective mass of the conduction band is 0.13m0, where m0

is the free electron mass. The relative permittivity of GaN
is 9 .7, the temperature 300K and the surface recombination
velocity 1.49 · 107cm/s. A constant grid spacing of 10nm
is used in transport direction (N = 311). The device is

a

b b/2t

ε0

εGaN

2DEG

d

Source Drain

Fig. 1. HEMT with three gates and a 3µm long channel (a = 0.34µm,
b = 0.66µm, d = 0.026µm, t = 0.04µm) [5].

simulated for the highest mobility mentioned in the paper
(4170cm2/Vs and τ = 0.308ps) (Fig. 2). The lowest order

0 0.5 1 1.5 2
0

20

40

60

Frequency (THz)

R
ea

l
p
ar

t
o
f

d
ra

in
se

lf
-a

d
m

it
ta

n
ce

(a
.u
.)

l = 1
l = 9
l = 15

Fig. 2. Real part of the drain self-admittance (ℜ{YDD(j2πf)}) for µ =
4170cm2/Vs and VDS = 0V.

model (l = 1) corresponds at zero drain/source bias to the
model used by Dyakonov and Shur, since the (linearized)
convective derivative is zero in this case. For this low mobility
the expansion with Hermitian polynomials converges and
reproduces the results of the BTE, which are not shown. In
Fig. 3 the absolute value of the drain self-admittance is shown
in the complex plane (jω = σ+j2πf ) for l = 1. As expected,
at a real part of σ = −1/2τ = −1.62/ps a series of zeros
and poles is found in accordance with the theory of Dyakonov
and Shur [2]. The zeros (poles of the drain self-impedance)
correspond to the plasma instabilities and they are strongly
damped due to the low mobility and zero drain/source bias.
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Fig. 3. Absolute value of the drain self-admittance (|YDD(σ + j2πf)|) for
l = 1, µ = 4170cm2/Vs and VDS = 0V.

In the case of a model with 10 moments additional poles and
zeros occur at about σ = −1/τ = −3.25/ps (Fig. 4), which
have negligible impact on the admittance at σ = 0 (Fig. 2). In
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Fig. 4. Absolute value of the drain self-admittance for l = 9, µ =
4170cm2/Vs and VDS = 0V.

Ref. [5] an electric field of 450V/cm was applied resulting in
the case of three gates in a drain/source bias of VDS = 0.135V.
As shown in Fig. 5 the results barely change and no negative

real part of the drain self-admittance occurs. At such low
mobilities THz waves cannot be generated and a much higher
mobility with 2πfτ ≫ 1 is required. In Fig. 6 results are
shown for a 100 times higher mobility. The expansion with
Hermitian polynomials no longer converges and the additional
poles due to the higher moments (Fig. 7) have a much stronger
impact on the drain self-admittance than in the case of the
lower mobility (Fig. 4). Thus, the hydrodynamic model used
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Fig. 5. Real part of the drain self-admittance for µ = 4170cm2/Vs and
VDS = 0.135V.
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Fig. 6. Real part of the drain self-admittance for µ = 4.17 · 105cm2/Vs
and VDS = 0V.
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Fig. 7. Absolute value of the drain self-admittance for l = 9, µ = 4.17 ·
105cm2/Vs and VDS = 0V.

by Dyakonov and Shur is not able to describe transport in
devices with mobilities necessary for plasma oscillations even
at zero drain/source bias. In the case of a nonzero bias the
situation gets worse.

IV. CONCLUSIONS

Under quasi-ballistic conditions, the expansion with Her-
mitian polynomials no longer converges and plasma wave
modeling requires a much more sophisticated transport model
than the hydrodynamic model. Furthermore, it is not clear
whether plasma instabilities can be used to generate THz
waves with HEMTs.
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