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Abstract—This work evaluates the feasibility of optimizing
SiC power MOSFETs through multiobjective optimizers (MOOs)
based on modern elitist genetic algorithms. This technique is
validated on a 0D problem of high practical interest – the
optimization of the epitaxial drift layer, using the ionization
coefficients from [1] and [2] in addition to those from [3],
extensively used in literature. Then the results are confirmed with
1D TCAD, removing approximations introduced by [4] and [5].
Finally MOOs are used with 2D TCAD simulations to evaluate
the tradeoff of breakdown voltage (VB), threshold voltage (VT ),
saturation current (Idsat) and on-state resistance (ron) as the
channel profile is varied.

I. INTRODUCTION

Optimization of semiconductor devices through TCAD sim-
ulation are routinely used to shorten time to market and to
reduce the number of prototype lots. Most design optimiza-
tions are a trade-off between conflicting objectives such as the
conduction losses and the switching losses in an IGBT, and
are often performed by empirical approaches such as sweeping
sequentially the values of design parameters.

Algorithm-based design optimization is also in use in the
semiconductor industry but it is limited to the more traditional
approach of combining the optimization objectives into a
single cost function, typically through the use of weighted
sum and using a single objective optimizer (SOO)[6][7].
However, only a portion of the trade-off between the objectives
is explored, depending on the convexity properties of the
optimal trade-off between the objectives. Also, the quality
of the solution depends on the choice of the weights, since
small perturbations in the choice of the weights can lead to
quite different solutions. Modern MOOs are better at fully
exploring the design space and at identifying the set of optimal
solutions, known as the Pareto front. The solutions on the
Pareto front are such that the value of one of the objectives
cannot be improved without degrading at least one other
objective. Identifying the Pareto front enables the designers
to understand the nature of the problem and to pick the most
advantageous trade-offs. MOOs are typically realized through
Evolutionary Algorithms (EA) that evolve a population of
candidate solutions by evaluating their fitness, retaining the
best performing candidates, breeding and mutating them in an
attempt to improve the fitness of the new population. MOOs
require more simulations than SOOs, therefore they typically
used for simulations that are not extremely computationally
intensive, such as interconnect circuit simulation [8] or elec-
tromagnetic antenna design [9].

Extending this approach to the needs of the power semi-
conductor industry is not straightforward, as simulations re-
quire significant computational time because of the device size
or the numerical problems due to widebandgap semiconduc-
tors.

This work explores the applicability of MOOs to practical
aspects of the design and optimization of SiC power semi-
conductor devices in increasing order of complexity and of
computational requirements.

II. TCAD SIMULATIONS OF SIC DEVICES

Silicon Carbide has shown in the past years tremendous
potential for high voltage power semiconductor devices: the
widebandgap allows MOSFET devices to operate at the block-
ing voltage typical of bipolar devices, with even lower con-
duction losses [10]. Additionally the unipolar devices switch at
higher frequency with lower losses, thereby reducing the size,
weight and cost of passive components [11]. Simulating SiC
devices involves additional challenges with respect to Silicon
devices: the material has been less thoroughly characterized
and there are still uncertainties in the precise values of the
parameters of some physical models [6]. Furthermore, the
wide bandgap of SiC causes significant numerical problems.
The intrinsinc carrier concentration in SiC is 18 orders of
magnitude lower than in Si, leading to extremely small carrier
concentrations in depleted regions, in the absence of genera-
tion centers or optical illumination. These very small carrier
densities coupled with very high doping levels challenge the
numerical precision of 64 bit computation. In order to capture
device breakdown, it is necessary to solve the numerical
problem with at least 80 bit precision [6]. Arithmetic at 128
bit, 256 bit, or even at arbitrary precision are feasible on the
x86 64 architecture but the computation time needed increases
exponentially, limiting practical applicability.

III. MULTIOBJECTIVE OPTIMIZATION OF SIC UNIPOLAR
DEVICES

In the case of unipolar devices such as JBS diodes, JFETs
and MOSFETs both ron and VB are determined by the doping
and the thickness of the epitaxial layer. Deviating from the
optimal thickness and doping combination results in excessive
resistance or insufficient margin over the required breakdown
voltage.
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Many analyzes and optimizations of non-punch through SiC
devices, such as [12], are based on the well-known dependance
of the critical field from the doping concentration from [3].

A. Multiobjective Optimization for the 0D test case: SiC drift
layer

Since TCAD simulations of SiC devices are computationally
intensive, it is advantageous to approach the problem starting
from a 0D model, i.e. from an analytical model.

Design rules for the design of the drift layer of punch-
through devices are derived with several approximations in [4]
and then refined in [5], by finding iteratively the distribution
of the electric field for which the ionization integral for either
holes (eq. 1) or electrons reaches unity [13].

The Pareto front for the optimal trade-off is found in [5]
by brute force by varying alternatively the thickness and the
doping. This inefficient approach is shown in Fig. 1 by the
thin dotted lines for a thickness of 11 and 13 µm, using
the impact ionization coefficients for holes and electrons αn,p

from [3]. By choosing a set of thicknesses for the epitaxial
layer and, for each of those, a large corresponding set of
doping concentrations, [5] identifies the locus of optimal
design.

∫ xD

0

αN (x) exp

[∫ x

0

(αP (x′)− αN (x′)) dx′
]
dx→ 1 (1)

The optimization problem can be efficiently solved by the
elitist genetic algorithm [14], setting boundaries on VB to
focus on the voltage classes of interest, as indicated by the dot
symbols in Fig. 1. To simplify the problem, only the Poisson
equation is considered and epitaxial layer is discretized in
1D with a non-uniform step, to increase the resolution of
the grid near the peak of the electric field. The breakdown
voltage is found by a bisection algorithm, by evaluating the
electric field distribution as a function of doping, thickness,
and applied electric field, and solving for either the ionization
integral for holes or electrons approaching unity. An efficient
implementation in Python enables to identify the Pareto front
in a few minutes for a given voltage class.

The optimal solutions have been calculated for αp,n from
[1], [2], and [3], as shown in Fig. 1. The impact of the choice
of impact ionization model is discussed in Section III-C with
the support of TCAD simulations.

B. Performance of MOOs for the 0D test case

The optimization of the drift layer for VB = 3.3 kV is
chosen as a 0D test case, to compare the performance of
different MOOs. The 0D test case is extremely efficient since
the physics of the optimization problem is quite correctly
captured and the computation cost is extremely low compared
to a TCAD optimization problem. In fact, the performance
of MOOs can only be evaluated on a series of runs of
optimizations for the same problem, so that the influence
of the initial function evaluation and of the random seeds
of the MOOs is averaged out. Furthermore it’s important to

Fig. 1. Trade-off curve between ron and BV . The dots are obtained through
MOO optimization[14] of a 0D model with αn,p from [1][2][3]. The dashed
line represents the approximate design rule from [5], obtained though a brute
force approach (illustrated by the thin dotted lines).

compare optimization runs with varying numbers of function
evaluations to assess the speed of convergence to the Pareto
front.

To illustrate the complexity of comparing the performance
of MOOs, Fig. 2 depicts the Pareto fronts obtained by the
well-known NSGAII[14] and NSGAIII[15] MOOs after 10
runs of optimizations with a limit of 500 and 2000 function
evaluations.

NSGA-II[14] and NSGA-III[15] are EA with surrogates for
evolutionary operators including selection, genetic crossover,
and genetic mutation that select and rank a hierarchy of sub-
populations based on the ordering of Pareto dominance. They
aim at promoting a diverse front of non-dominated solutions.

In this particular case, NSGA-III clearly obtains a much
closer and more stable approximation of the Pareto front after
500 evaluations than NSGA-II. A quantitative evaluation of
the approximation of the Pareto front for different MOOs
can be performed introducing the concept of hypervolume,
as indicated on the left side of Fig. 2.

The hypervolume hv0 of a particular Pareto front is the area
subtended by the front and delimited by the worst acceptable
combination of objectives, represented by the point P in Fig. 2
[16].

Fig. 3 compares the hypervolume indicators for the NSGA-
II[14], NSGA-III[15], MOEA/D[17], and SMPSO[18] MOOs.
The decreased performance of NSGA-III compared to NSGA-
II for a larger number of function evaluations may result
because NSGA-III attempts to improve the variance of the
candidate sub-populations adaptively, to avoid local minima.
MOEA/D is a EA that decomposes the MOO problem into a
number of SOO sub-problems and then optimizes them simul-
taneously by applying search heuristic criteria [17]. Despite its
wide and successful use in electromagnetic applications, it can
encounter issues depending on the shape of the Pareto front
and the specific optimization problem. SMPSO is a particle
swarm MOO inspired by the social behavior of bird flock that
reduces the exploration the velocity of the particles to improve
the quality of the solutions [18].
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Fig. 2. Comparison of the Pareto fronts found by the NSGA-II[14] (on the
right) and NSGA-III[15] (on the left) MOOs for 10 runs of optimization of 0D
model for with a limit of 500 evaluations (red dashed lines with circle marker)
and 2000 evaluations (blue solid lines with dot marker). Each of the 10 runs
is shown with a different shade of color. On the left side, the procedure for
the evaluation of the hypervolume for a particular Pareto front is shown.

Fig. 3. Comparison of the hypervolume metrics for 10 runs of 2000 and
5000 evaluations using the NSGA-II[14], NSGA-III[15], MOEA/D[17], and
SMPSO[18] MOOs.

Finally, the performance of NSGA-II[14], NSGA-III[15],
MOEA/D[17] is compared in detail in Fig. 4, showing that
[14] results in a more even exploration of the design space
and in a more consistent approximation of the Pareto front.

C. Multiobjective Optimization for the 1D TCAD test case:
SiC drift layer

To understand the implications of the choice of the model
for impact ionization, 1D TCAD simulations are compared
with measurements of experimental sample SiC structures in
Table I. Considering that the efficiency of the termination in
the samples is unknown and can only be roughly estimated
at 90%, the simulations give some indication that [1] may
potentially overestimate VB and that [2] might underestimate
VB for the 4000 V structure. In particular, [2] presents a very
comprehensive and rigorous extraction of the impact ionization
coefficients. A possible explanation of the discrepancies may
be that the extraction of the ionization coefficient for holes
αp, shown in Fig. 8 in [2] focuses on the range of values of

Fig. 4. Comparison of the performance of the MOOs [14],[15],[17] for 10 runs
of 5000 evaluations of 0D model. The dashed line represent the approximate
design rules from [5]. While [14],[15] obtain a reasonable approximation of
the Pareto front, [17] does not fully explore the design space.

TABLE I
1D TCAD SIMULATED VB FOR TWO SAMPLE SIC STRUCTURES

Model 2400 V sample 4000 V sample

Konstantinov 2682 4211
Hatakeyama 2906 4793

Niwa 2572 4028

the electric field between 1 and 2 MV/cm. Furthermore, the
fitting of αp slightly favors the lower end of the range of the
electric field. Considering that SiC devices are often optimized
for minimum on-state resistance, the typical maximum electric
field can be moderately in excess of 2 MV/cm, which could
explain the discrepancies observed. Obviously, a much more
refined study is necessary to provide solid and extensive
conclusions.

Then, NSGA-II[14] is used with 1D TCAD simulations
with αn,p from [3] to introduce the self-consistency between
electric field and carriers, neglected by 0D models such as
those previously presented and those in [4] and in [5] . The
Pareto front shown in Fig. 5 is obtained with 1000 TCAD
simulations (requiring about 4 hours) and is in good agreement
with the 0D models.

D. Multiobjective Optimization for the 2D TCAD test case:
SiC MOSFET

Finally, NSGA-II[14] is applied to a much more challeng-
ing problem: the optimization of a SiC MOSFET with 2D
TCAD simulations of VB , VT , Idsat and ron. Given that SiC
simulations require computation times in the range of tens of
minutes to hours for breakdown, it possible to explore only
a few hundreds candidate solutions in the objective space in
a reasonable time. However, with educated guesses on the
parameter ranges it is possible to obtain valuable information
on the trade-off curves of the objectives and sensitivities to
design parameters.

In Fig. 6 the doping profile of the channel of MOSFET
is optimized, showing that the designer can trade a limited
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Fig. 5. Trade-off curve between ron and BV . The squares are obtained
through MOO optimization[14] of a 1D TCAD model with αn,p from [3].
The circles indicate the Pareto front shown in Fig. 1 for αn,p from[3].

Fig. 6. Trade-off curves between ron and Idsat (left) and BV and VT (right)
as the channel of a SiC MOSFET (inset) is varied in a 2D TCAD simulation.

increase in ron to effectively limit Idsat without compromising
VB . The optimization with 4 objectives, 5 design variables and
4 constraints requires approximately 2 days.

IV. CONCLUSION

This work demonstrates the applicability of MOOs to fa-
cilitate semiconductor device design. The well-know design
rule from [5] is cross-checked by using several models for
impact ionization coefficient and both analytical models and
1D TCAD simulations. Finally, a realistic example of 2D
TCAD multiobjective optimization is presented.
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