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Abstract— Local statistical variability (m
important in advanced CMOS technologies c
among others, SRAM supply and holding volt
and yield. TCAD simulation of statistical var
for identification of variability sources and t
technology development and optimization. 
important role in the development of accurate 
models for SRAM design, statistical
characterization and statistical circuit 
verification. In this paper we compare the 
results of statistical variability in 14nm 
technology with Silicon measurements in order
relative role of key statistical variability sou
technology optimization and to generate target
statistical compact model extraction. 
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I.  INTRODUCTION 
Tri-gate devices, like the FinFET, are now w
14nm technology generation and below. Fi
flow can re-use many integration steps fro
while providing better electrostatic integrity
FETs, owing to tighter control of the cha
multiple gates wrapped around the body. 
excellent short-channel effects (SCE), low-
performance devices. In order to perform ti
multi-gate devices accurately and to det
efficient knobs for optimization, it is essen
capture the physical behaviour of the device
paper presents a full 3D FinFET process/
flow where the impacts of dopant implanta
relevant device characteristics such as electro
Vth mismatch (MM) are addressed at d
relevant to 14nm technology. 

II. TECHNOLOGY DESCRIPTIO

 In this paper we have simulated state
FinFET ‘gate last’ technology transistors, wh
in detail elsewhere [1][2][3]. This technolo
raised S/D is used for  both n- and p-Fin
FinFET incorporates eSiGe channel stressor
well implant scheme. The device channel do
been designed to achieve high drive and lo
including halo/extension implants with an
budget. NFET and PFET logic devices hav
basis for uniform device calibration of TC
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Hfin(nm) 36 

Wfin(nm) 9 
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W (nm) 75 

LG (nm) 20 

Vdd 0.9 
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Figure 1: TEM Images of the NMO

A. TCAD Simulation Setup and
 A 3D device simulation 

based on transmission electro
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process simulation then is used to model 
results obtained from the investigated proce
in Table III. The device structures and the 3
generated from the process simulations are 
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both doping profiles and electrical simulation

 

 
Figure 2: TCAD calibration for n-type and p-ty
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TABLE II 

VARIABILITY PARAMETER
Source NMOS 

RDD Yes Yes 

FER σ=0.18nm 
λ=20nm 

σ=0.
λ=20

MGG None � = 
ΔWF
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Figure 3: TEM images showing metal gate

B. Statistical Variability 
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TAB
PROCESS PARAMETERS

SENSI
SRAM Process Item 

PU Vt adjust dose [cm-2] 

PD Vt adjust dose [cm-2] 

FOM Type 

VtSat Experiment (ET) 

VtSat TCAD 

VtLin Experiment (ET) 

VtLin TCAD 
 

III. RE

Variability simulations using th
have been carried out for the 4
an ensemble of 1000 statistic
The impact of the individu
variability on the potential pro
illustrated in Fig. 5. 
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device calibration is valid a 
lysis has been performed which 
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LE III 
S AND NORMALISED VT 
TIVITY 

S1 S2 S3 S4 

0 1e13 4e13 6e13 

0 1e13 3e13 6e13 

S1 S2 S3 S4 

0.967 1.033 1.196 1.285 

0.952 1.022 1.154 1.220 

1.000 1.081 1.249 1.330 

1.015 1.086 1.217 1.282 

ESULTS 
he parameters given in Table II 

4 process splits and in each case 
al devices has been simulated. 

ual and combined sources of 
ofile of an example device are 
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Figure 4: Example 3D potential distributions obtained from 

simulations of the PU device with individual and combined sources 
of variability. 

 
The impact of each of the process split conditions on the 
device mismatch is shown in Figs. 6 and 7 where good 
agreement is obtained between simulation and measurement. 
In order to achieve a stable SRAM cell the Pull Up consists of 
two fins per device. Additionally due to the increaseed 
effective width of the device, this helps to reduce the local 
mismatch as depicted in Fig. 6. 
 

Figure 5: PD device VtSat mismatch. ET shows experimental data. 

Figure 6: PU device Vtsat mismatch. ET shows experimental data. 
 
Figures 8 and 9 show example plots of the correlations 
between various device figures of merit (FOM) for both the 
Pull Up and Pull Down devices of Split 1.  
 

Figure 7: Figure of merit correlation plots for the PD device S1. 
 

 
Figure 8: Figure of merit correlation plots for the PU device, S1 

 
It is interesting to note that there are complex correlations 
between Ion, Vt and DIBL (which is important in SRAM), 
that can only be accurately obtained via the simulation of all 
sources of variability in combination. In fact DIBL shows a 
very strong de-correlation with the other FoM. The impact of 
the combined sources of variability on the electrical 
performance of the PD and PU devices for two of the 
simulated implant splits can be seen in Figs. 11 and 12. 
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Figure 9: PD Device statistical IdVg characteristics with combined 
sources of variability for S1 (top) and S4 (bottom) 

 

Figure 10: PU Device statistical IdVg characteristics with combined 
sources of variability for S1 (top) and S4 (bottom). 

 

By performing simulations that include all expected sources 
of device mismatch, and capturing the inherent correlations and 
de-correlations between figures of merit, we are in a position to 
extract compact models that can be used for variability-aware 
SRAM design. Using the GSS ModelGen technology an 
unlimited number of compact model cards can be generated 
that retain the statistical distributions (mean, standard 
deviation, skew and kurtosis) and the correlations between 
compact model parameters so that the transistor models used in 
the SPICE circuit simulation will match the statistical 
characteristics of the underlying devices that were obtained 
from the TCAD device simulations [13]. Global variability 
coming from process variations can also be included to 
produce a full variability-aware PDK for SRAM design, 

statistical standard cell characterization and statistical circuit 
simulation and verification. 

IV. CONCLUSIONS 
Technology scaling presents an abundance of opportunities 

where TCAD can make significant contributions. In this work, 
an optimized TCAD process and device simulation strategy for 
3D FinFETs is presented. After calibration, the resulting 3D 
doping profiles correctly predict the short-channel behaviour of 
the devices for the investigated splits. These calibrated inputs 
are then used to perform an assessment of FinFET variability 
improvement. We have presented a simulation methodology 
that accurately models the effect of combined sources of 
variability on a state of the art 14nm FinFET technology under 
a range of process conditions which is essential in order to fully 
realize the potential of a technology when the impact of 
mismatch on optimal device design is considered. TCAD is 
expected to become an essential part of strategy for companies 
to contain R&D cost and continue timely delivery of new 
technology nodes. The rapid production of TCAD-based PDKs 
for SPICE circuit simulations allow rapid investigation of the 
effect of technology process decisions on circuit design, 
facilitating a true design-technology co-optimisation (DTCO) 
[14] that can help minimise the effects of variability on circuit 
performance by optimising the process design stage for final 
circuit performance and yield. 
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