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Abstract—In this work we extend an effective mass model
for computing the drain current of tunnel-FETs to account for
the anti-crossing of the light- and heavy-hole branches of the
valence band. The model is validated by comparison with NEGF
simulations based on a k · p Hamiltonian. Application of the new
model to the electron-hole bilayer TFET is provided showing
that the inclusion of the asymmetry of the real and imaginary
branches of the hole dispersion relation is critical in determining
the device characteristics.

I. INTRODUCTION

Recent increase of interest in nanoscale band-to-band tun-
neling (BTBT) devices such as the Tunnel FET (TFET)
has brought in the need for new simulation methods for
accurate and efficient simulation of such devices. Most of
the approaches employed in the literature are based on full-
quantum models with atomistic or k · p Hamiltonians [1]–[3]
which accurately describe the coupling between the valence
and conduction bands.

Models based on the effective mass approximation (EMA)
are more efficient from a numerical point of view and can han-
dle large device and include phonon assisted tunneling with a
small additional effort [4]. They are however based on separate
solutions of the electron and hole Schrödinger equations. The
coupling between band is added in post processing assuming
suitable dispersion relationship in the gap. The ”anti-crossing”
[5] of the light-hole (LH) and heavy-hole (HH) branches is not
natively included in such approaches. With ”anti-crossing” we
mean that, the top of the valence band in III-V semiconductors
is connected with the conduction band through an imaginary
branch with low mass (the LH one), even in the presence of
strong quantization that makes the HH branch dominate. In
fact, NEGF simulations [2] show significant BTBT current
even in quantum well and nanowires, where LH are very low
in energy. In other words, the tunneling effective mass is closer
to the LH mass even when HH subbands are concerned.

The goal here is to show that the EMA-NP model using
the LH mass as tunneling mass for the HH subband fairly
reproduces the k · p results.

II. MODEL DESCRIPTION

The simulator employed here relies on the 1D solution of the
closed-boundary Schrödinger equation using the EMA [4] with
nonparabolicity (NP) corrections [6], [7]. The model has been

originally developed for the electron-hole bilayer Tunnel FET
(EHBTFET) [4] but, in order to analyze the anti-crossing in a
simpler template structure, it is applied here to quantum-well
diodes (Fig. 1), where size-induced quantization takes place in
the direction normal to the p-n junction (we have the so-called
2D-2D edge tunneling [8]). The open boundaries along the x-
direction are emulated by taking long n and p side regions
(100nm each). The direct band-to-band tunneling current is
given by [7]:

ID '
4πqW

~
∑
|Mcv|2JDOS(E)Θ(Eh − Ee)(fc − fv)

(1)

where fc and fv are the Fermi distributions of the electrons
and holes respectively, Ee and Eh are the quantized energies
for electron and hole states respectively. Θ(Eh − Ee) is the
step function denoting the alignment of the quantized subband
energies. |Mcv|2 is the squared magnitude of the coupling
element between the electron and hole states, given as [9]:
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where |F (x)| is the magnitude of the electric field, ψk′α′ and
ψkΓ are the wavefunctions for the hole and electron states
respectively. From this expression it is obvious that spatial
overlap of the WFs critically determine the coupling strength
between the electron and hole states and therefore the BTBT
current.
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Fig. 1. Sketch of the InAs quantum well diode as a 2D-2D edge tunneling
device.
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Compared to the bulk case with no quantization, incorpo-
rating quantization effects to simulate the quantum well diode
structure requires two modifications. The first modification is
the use of the 1-D joint density of states (compared to the
2D one used in bulk diodes) JDOS(E) which preserves the k
along the y direction only, since the k-space is unconstrained
along y [4]. The second modification is the rigid shift of
the bulk band edges according to the quantized energy levels
along the z direction. Quantized energy levels are calculated
numerically using the 4-band k · p simulator [3]. The potential
is assumed to be uniform in the transverse (y) direction.

To obtain the tunneling parameters, we have fitted the
imaginary dispersion relation (see Fig. 2 for the real and
imaginary dispersion relations obtained) from the 4-band k · p
simulator [3]. The effective masses obtained from the fitting
are reported in Tab. I. For InAs, the fitted tunneling effective
mass (mHH,imag) is drastically different than the effective mass
of the real branch (mHH). Note that the fitted value almost
coincides with the bulk LH mass, thus confirming the results
of [10] and highlighting the anti-crossing [5]. The electron
dispersion, on the other hand, rather exhibits a symmetry
between the real and imaginary branches.

TABLE I
EFFECTIVE MASSES AND CONDUCTION BAND NONPARABOLICITY FACTOR

EXTRACTED FOR INAS SLABS OF DIFFERENT THICKNESSES (SEE FIG. 2)

Slab thickness m∗HH,real m∗HH,imag m∗e α[eV−1]

5nm 0.33 0.037 0.037
3.610nm 0.33 0.03 0.026

15nm 0.33 0.023 0.025

This finding, however, brings up the question of using ade-
quate effective masses for the classically allowed (Eh < EV )
and forbidden regions (Eh > EV ), since the effective mass
in the forbidden region strongly determines the amplitude
of the wavefunction tail, and therefore the spatial overlap
between the electron and hole states in the bandgap (eq. 2).
To overcome this issue, we utilize the WKB approximation
using single-band approximation, in which we modify the
effective mass in the forbidden region with the value extracted
from the imaginary dispersion calculated by the 4-band k · p
simulator (table I). The WF is then calculated using the
familiar expressions given by the WKB approximation [12]:

ψh(x) =


C√
|kx(x)|

e−i
∫
kx(x)dx Eh < EV

C√
|kx(x)|

e−
∫
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(3)

where C is the normalization constant.
For all the results presented here, we take the potential

profile calculated by the k · p simulator as input and run
the model as a post-processing step, in order to isolate the
influence of the tunneling parameters from the influence of
device electrostatics.
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Fig. 2. Real (kx > 0) and imaginary (kx < 0) dispersion for (up) 5nm
(middle) 10nm (bottom) 15nm thick InAs from k · p. The red and black
curves indicate the real and imaginary relations predicted by single band
approximation for HH (with mass m∗

HH,real) and conduction band (with
mass m∗

e), respectively. The green curve is the fit obtained by the Kane’s two-
band dispersion relation [11] (κ = 1
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Parameters from the fitting are given in Table I.

III. RESULTS & DISCUSSION

Fig. 3 shows the current densities obtained by the EMA-NP
model for a bulk diode (TW = 50nm) with different doping
levels. A general agreement with the k · p results, better at low
doping levels, is observed.
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Fig. 3. I-V characteristics of bulk diodes from EMA-NP (dashed) and k · p
(solid) for various doping levels.
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Fig. 4. Comparison of I-V characteristics for the QW diode shown in Fig.
1 considering various doping levels. TW = 5nm. EMA-NP (dashed), k · p
(solid).

Fig. 4 compares the k · p and EMA-NP results for QW
diodes (Fig. 1) with TW = 5nm and different doping levels.
The difference between the models seems to be increasing
with increasing doping levels, which results from higher k-
states being able to contribute to the current, where the EMA
description starts to break down.

Fig. 5 compares the models for different TW: both models
show the same trend of current increase as TW increases.
However, comparing Figs. 3 & 4, it is seen that the current
density remains approximately the same, which signals that
in both QW and bulk diodes, it is the same imaginary path
that is connecting the valence and conduction bands with very
similar effective mass values.

To assess the impact of the large asymmetry in mass of the
real and imaginary branches, we compare the cases using the
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Fig. 5. Same as Fig. 4 but for various TW values. NA = 2× 1019cm−3.
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Fig. 6. Comparison of I-V characteristics using k · p (solid) and EMA-NP
with mtun,HH = 0.03m0 (Dashed) or with mtun,HH = 0.33m0 (Dashed
with symbols).

real or imaginary branch masses in the forbidden region: Fig.
6, shows a dramatic decrease in current when the HH mass is
used for tunneling.

Fig. 8 presents an application of the model to the EHBTFET
(sketched in Fig. 7), a 2D-2D face tunneling [8] device
which utilizes BTBT between quantized 2D electron and hole
gases. [4]. The I-V characteristics given in Fig. 8 demonstrate
the importance of using the correct tunneling mass in the
simulations. About one order of magnitude of increase in
the tunneling current is seen when using the LH mass for
tunneling, since it allows for much higher spatial overlap
between wavefunctions [4].
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Fig. 7. Sketch of the InAs EHBTFET device structure and in-
dication of 2D-2D subband-to-subband tunneling. LOVERLAP = 50nm,
TOX,EOT = 0.5nm, TCH = 10nm, LUNDERLAP = 50nm.
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Fig. 8. Transfer characteristics of the InAs EHBTFET of Fig. 7 using HH
mass (dashed w/symbols) or calibrated effective mass of the imaginary branch
(solid) for tunneling. The effective mass values used for simulations with
different channel thicknesses are given in Table I. Vp−gate = −Vn−gate.
VDS = 0.3V.

IV. CONCLUSION

A EMA-NP model has been modified to account for anti-
crossing of the valence band and transverse quantization
through adequate shifting of energy bands and modification
of the transverse JDOS. A general agreement is observed
between the EMA-NP and k · p models after proper calibra-
tion. EHBTFET simulations indicate that asymmetry of the
effective masses of the imaginary and real branches of the
hole subbands has a drastic impact on the ON current levels,
making it essential to include this effect in the simulations.
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