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Abstract—Macroscopic equations are discussed that describe 
carrier transport in situations in which an ordinary 3D semicon-
ductor is coupled to a 2D material like graphene or molybdenum 
disulfide.  The transport equations are familiar ones from either 
diffusion-drift or density-gradient theory, with the main focus 
being on the critical boundary conditions that couple the two sys-
tems together.  To illustrate the hybrid description we apply it to 
situations involving graphene on p-type SiC.  

Keywords—graphene; SiC; diffusion-drift; density-gradient; 
transport theory.  

I. INTRODUCTION 
The recent advent of materials like graphene, molyb-

denum disulfide, and silicene has led to an intensive world-
wide investigation of electronic and optoelectronic devices in 
which the carrier transport takes place in a single (or a few) 
atomic layer(s) and is thus physically constrained to be 2D.  
Further expanding the opportunities is the possibility of hybrid 
device designs in which 2D materials are integrated with each 
other (van der Waals solids) [1] or with ordinary 3D semicon-
ductors [2-4].  To support these prospects, e.g., for photovolta-
ics [5], device modeling tools are obviously needed.  This 
need seems to be largely addressed for the pure 2D case, with 
both microscopic [6] and macroscopic [7] approaches and 
tools being well established.  In the present work we therefore 
focus on the hybrid situations, and especially on the 2D/3D 
case, building on [7] by further developing the macroscopic 
modeling approach that tends to have the most value for prac-
tical engineering.  

In formulating the hybrid 2D/3D theory in Section II we 
follow [7] in treating the 2D materials using a diffusion-drift 
description consisting of 2D transport equations plus an elec-
trostatic boundary condition applied across the layer.  Like-
wise we employ standard continuum theories of 3D semicon-
ductor transport, using either conventional diffusion-drift 
(DD) theory or density-gradient (DG) theory [8], with the lat-
ter allowing tunneling effects in the vicinity of the 2D/3D 
junction to be represented.  Of most importance are the cou-
pling boundary conditions, applied at the 2D/3D boundaries 
and that interrelate the 2D and 3D variables.  For concreteness 
and purposes of illustration we apply the hybrid theory to var-
ious device situations involving graphene/SiC junctions that 
are easily formed, for example, by sublimation of silicon from 
SiC at high temperature or by CVD/transfer. 

II. THEORY 

The hybrid theory developed herein is macroscopic in 
character, and so is concerned with populations of charge 
carriers that are represented by density variables, subject to 
continuum assumptions, and governed by the laws of classical 
field theory.  Also, for this paper steady-state conditions are 
assumed throughout.    

A. Differential Equations 
For the description of bulk semiconductors we use either 

DD theory or the scattering-dominated “DGC” version of DG 
theory as discussed in [8].  Written in unified form, the differ-
ential equations of these theories are 
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where 𝑠 ≡ 𝑛 and 𝑟 ≡ 𝑝 , the DD description results when 
the DG coefficients 𝑏! and 𝑏! are set to zero, i varies from 1 
to 3 to represent the x, y, and z coordinates, the “comma” sub-
script notation indicates partial differentiation, and the Ein-
stein summation convention is assumed.  The functions 𝜑! 𝑛  
and 𝜑! 𝑝  are the respective DD electron and hole chemical 
potentials for which expressions are well known, Φ! and Φ! 
are the respective electron and hole electrochemical potentials, 
and all other parameters take their usual meanings.  For 2D 
materials we assume DD transport so that the differential 
equations are [7]: 

2𝑎                             𝐽!,!! = 𝜇!𝑛 𝜓 − 𝜑! ,! ,!
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where over-bars indicate 2D variables, and 𝛼 = 1,2	  denotes 
the components of the coordinate system defining positions in 
the 2D material.  Like 𝐺 and R in (1b) and (1c), 𝐺 in (2a) and 
(2b) accounts for photogeneration in the 2D material while 𝑅 
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is the recombination rate [6,9], and as discussed further below, 
𝑇! and 𝑇! are the respective local net rates of transfer of elec-
trons and holes into the 2D material from neighboring layers.  
Finally, the electron and hole chemical potentials 𝜑!  and 
𝜑!  are functions of their corresponding densities with the rela-
tionships in the case of graphene being:	  	  
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where 𝑁!" ≅ 9.8×10!"cm!!  (at room temperature) and 
𝐸!"# ≡ 𝐸! SiC − 𝐸!"#$% graphene ≅ 0.5eV  is the energy 
offset between the SiC conduction band and the Dirac point in 
the graphene [4].  The integrals in (3a) and (3b) can be used as 
is within the numerical scheme or they can be approximated 
by simple algebraic expressions [7] or look-up tables.   

B. Boundary Conditions 
As discussed in [7], a first condition that is relevant for any 

2D material including when layered or atop a 3D semiconduc-
tor is an electrostatic one applied across it:   

4𝑎                                     𝜀!"#𝜓,!!"# − 𝜀!"#𝜓,!!"# = 𝑞 𝑛 − 𝑝 − 𝑁    

where the “3” direction is normal to the layer and the 2D ma-
terial has been assumed to be interposed between SiC and air.    

The crucial set of boundary conditions for the present pa-
per relate to the possibility of interchange of charge between 
the 2D layer and adjacent materials as expressed in the 2D 
transport equations (2a) and (2b) through the terms 𝑇! and 𝑇!.  
When these charge transfers occur into or out of a neighboring 
3D semiconductor, then these same terms must enter the 
boundary conditions, and in particular through charge conser-
vation conditions applied at the interface: 

4𝑏                                             − 𝐽!! = 𝑇!                     − 𝐽!
! = 𝑇! 

One way of viewing these conditions is that the 2D material 
acts as an “interface trap” analogous to those long studied at 
semiconductor surfaces.  Following this analogy, expressions 
for 𝑇! and 𝑇! can then be developed by considering rates of 
capture and emission.  

C. Numerical Methods 
To apply the foregoing theory, we formulate boundary 

value problems appropriate to the devices of interest.  In all 
problems treated herein we assume the variations in the 
“width” direction can be ignored so that the equations in the 
3D semiconductor reduce to 2D and in the 2D material reduce 
to 1D.  The numerical formulations are standard, with the DD 
version using quasi-Fermi level variables and the DG version 
using Slotboom-type variables.  The solutions are obtained 
using the Comsol FEM package (see www.comsol.com).  

III. APPLICATIONS 
In this section we illustrate the hybrid theory with various 

2D/3D device examples in which graphene forms junctions 
with p-SiC.                       

A. Equilibrium 
When the graphene is itself undoped it will tend to be 

remotely doped by the nearby acceptors in the p-SiC.  But the 
fact that the graphene’s Dirac point is energetically close to the 
SiC conduction band [2] means this effect will be relatively 
modest, and unless heavily doped the p-SiC surface will be 
depleted or weakly inverted.  This basic action may be studied 
in 1D equilibria, with some illustrative solution profiles being 
depicted in Fig. 1a for a case where the SiC is weakly inverted.  
The effect of increasing the SiC acceptor concentration on the 
“doping” of the graphene is shown in Fig. 1b with both the 
graphene density and Fermi level position being displayed.  
Finally in Fig. 2 we show the 2D variation in the electric 
potential potential around a junction formed between SiC and a 
graphene disk; the same depletion/weak inversion effect of the 
graphene as seen in Fig. 1a is again apparent. 

     

 
Fig. 1.  (a) Band diagram and carrier density profiles for a graphene-p-SiC 
heterojunction.  (b) Simulated graphene Fermi level position and hole den-
sity versus SiC doping concentration. 
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B. Field Termination 
The second example we consider is a hypothetical SiC p-n 

power diode in which, as depicted in Fig. 3, graphene strips or 
rings are inserted as a novel field termination similar to the 
concept of [10].  The hope is that the conductive graphene can 
(via the tangential electrostatic condition) moderate the lateral 
electric field in the underlying SiC sufficiently to raise the 
breakdown voltage.  Since the graphene strips are not 
contacted it would seem reasonable to represent them as 
floating at the unbiased potential, however, simulation finds 
that the SiC conduction band of the first graphene strip is then 
pulled below the graphene Fermi energy, meaning that the 
graphene will ionize and its potential will change.  To treat this 
situation we assume that the graphene strip ionizes to the point 

that the Fermi level is pulled just below Ec of the SiC.  As 
illustration, we consider a p-n diode reverse-biased at 100V, 
and show solution profiles for the electric field and the 
graphene electron and hole densities in Figs. 4a-c.  The strong 
band-bending seen in the graphene, and the consequent size of 
the electric field in the first strip (Fig. 4b) at this relatively 
small voltage (for a power diode) suggest that the single-layer 
graphene is not conductive enough for this application; 
whether multi-layer graphene would suffice remains to be 
explored.  

C. Forward Bias 
 Next we consider an n-graphene/p-SiC junction under 
forward bias as was studied experimentally in [4].  As 
suggested by the band diagram in Fig. 1a, the behavior should 
be current much like that of a Schottky barrier, and dominated 
by hole injection from the SiC into the graphene.  A thermionic 
DD simulation gives the result shown in Fig. 5 (in blue).  
Clearly, the calculated threshold voltage and current are higher 
and the ideality factor is lower than those measured 
experimentally [4].  A possible explanation is hole tunneling, 
and to examine this we employ DG theory and find (in red, 
Fig. 5) that it can indeed be important at graphene edges where 
the enhanced electric field acts to narrow the barrier.   The 

    
 

Fig. 2.  Elec-
tric potential 
in the vicinity 
of a graphene 
disk on the 
surface of a 
SiC substrate. 
 

        
Fig. 3. Graphene field termination design simulated by solv-
ing the 2D/3D hybrid equations.   

 

       
Fig. 4a.  The simulated band diagram across the surface when 
the graphene is assumed to be floating.  

 

 
Fig. 4.  The simulated (b) electric field and (c) elec-
tron and hole densities in the first few graphene 
strips when the SiC is reverse biased at 100V.   
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threshold voltage and current levels are much closer to 
experiment [4], however, the ideality factor is still low.  

D. Transparent Graphene Contacts 
As a final application we consider a graphene/SiC diode 

under forward bias where the electrical contact to the graphene 
is restricted to a small area, thus leaving the remainder of the 
area open, e.g., for photon absorption in a solar cell or 
photodetector application.   For illustration, we use the DD 
equations to model one half of a symmetric diode structure 
formed of n-type graphene and p-type SiC in which a 0.2µm 
wide contact region is set at the center of a 20µm wide region.  
For a forward bias of 3V, in Fig. 6a we plot the electric 
potential (in half the symmetric region) and observe it to be 
significantly non-uniform as a result of the relatively poor 
conductivity of the graphene.  This is seen more directly by the 
drop-off in current density plotted in Fig. 6b (red curve).  Also 
shown in that figure is the graphene electron and hole densities 
(blue).   Simulations of this type could be used, for example, to 
design the separation distance between metal contacts in a 
transparent electrode.  

IV. FINAL REMARKS 
The  results of this paper illustrate the use and value of the 

2D/3D hybrid transport theory for a number of technologically 
relevant device situations.  To be most value the theory will 
require better characterization of the materials involved, and 
especially of parameters such as the graphene lifetime [9] and 
the recombination velocity.  In addition, further generalizations 
of the theory will be need to be investigated including for the 
case when multiple graphene layers are present [7].  
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Fig. 5.  Comparison between the simulated thermionic 
current (DD) of a graphene/SiC diode with a thermion-
ic/tunneling (DG) simulation which includes an edge.  
The latter corresponds better to experiment [4].  
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Fig. 6a.   The electric potential in an n-graphene/p-SiC diode.  
The device is symmetrical about the left edge with the SiC re-
gion shown being 10µm wide and 1µm thick. 

      
Fig. 6b.  Carrier densities and hole injection current in the graphene 
layer as a function of position. 
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