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Abstract—We model equilibrium properties of possible room-

temperature electron-hole exciton condensates formed between 

two dielectrically separated transition metal dichalcogenide 

(TMD) layers, MoS2 layers here, toward application to novel 

beyond CMOS devices. Our simulation method employs an 

interlayer Fock exchange interaction incorporated into an 

otherwise intra-layer tight-binding Hamiltonian within a 

maximally-localized Wannier function (MLWF) basis set. 

Keywords—MoS2; bilayer; exciton condensate; maximally-

localized Wannier functions; tight-binding; Fock exchange 

interaction 

I. INTRODUCTION 

Excitons, electron-hole pairs bound by their Coulomb 
interaction, can form a condensed state in semiconductors 
similar to that of electron-electron pairs in superconductors at 
low temperature, e.g., [1,2]. Exciton condensation gives rise to 
novel quantum transport properties including near-perfect 
Coulomb drag and ultralow-voltage negative differential 
resistance (NDR) [2-4]. Ultralow-power beyond-CMOS devices 
based on these properties have been proposed, e.g., the Bilayer 
pseudoSpin Field-Effect Transistor (BiSFET) [5]. 

So far, exciton condensates and associated transport 
properties have been observed experimentally at very low 
temperature and using magnetic fields to create partially filled 
(electron-like) and partially empty (hole-like) Landau levels in 
the subbands of adjacent III-V quantum wells [1,2]. However, 
for a synergy of reasons, including achievable layer proximity, 
identical or similarly shaped conduction and valence band 
structures, and a largely separately adjustable dielectric 
environment, two-dimensional (2D) material systems offer the 
opportunity for exciton condensation at higher temperatures and 
absent magnetic fields. With two oppositely-charged and 
dielectrically separated 2D layers, the condensate of the spatially 
indirect interlayer excitons may even survive at room 
temperature [6-8]. 

Graphene was the first host explored to accommodate the 
interlayer exciton condensate [6,7], and work is ongoing. 
However, another group of materials, the transition metal 
dichalcongenides (TMDs) now being explored by many, may 
prove a more hospitable host [8,9]. TMD materials have the 
form of MX2, with M being a transition metal atom (Mo, W, 
etc.) and X being a chalcogen atom (S, Se, etc.). These atoms 

 
Fig. 1. Top and three-dimensional views of a MoS2 monolayer crystal structure. 

can form an atomically thin quasi-2D monolayer with a sheet of 
M atoms sandwiched by two sheets of X atoms, as for the MoS2 
monolayer shown in Fig. 1. 

In this paper, we perform simulations on the behavior of the 
exciton condensate in an illustrative bilayer MoS2 system as a 
starting point. However, in practice, staggered or even broken 
gap band alignments between dissimilar TMDs would be 
preferable to avoid the need for otherwise large interlayer and 
gate electric fields. 

II. SIMULATION METHOD 

A. Structure 

We model a MoS2 bilayer system with two perfectly aligned 
MoS2 monolayers. The two MoS2 monolayers are separated with 
center-to-center separation d by an interlayer dielectric. This 
interlayer dielectric and, more importantly, the extra-layer 
dielectric environment, as well as any free-carrier screening in 
the presence of a condensate, are simply described by a uniform 
effective dielectric constant εr in this work focused on the 
qualitative physics. 

B. Basis set 

With a tight-binding basis set |𝐑𝑛〉 where R labels the real-
space lattice sites and n labels the index of basis functions in 
each unit cell, the electron states in this bilayer system can be 
written as 

 

|𝜓〉 = ∑ 𝜑𝐑𝑛|𝐑𝑛〉

𝐑,𝑛

= ( ∑ +

𝑁

𝐑,𝑛=1

∑ )𝜑𝐑𝑛|𝐑𝑛〉

2𝑁

𝐑,𝑛=𝑁+1

 (1) 

Here 𝑛 = 1, ⋯ , 𝑁  denotes the basis functions |𝐑𝑛〉 of the top 
layer and 𝑛 = 𝑁 + 1, ⋯ ,2𝑁 denotes the basis functions of the 
bottom layer. These basis functions are usually required to be 
sufficiently localized in real space in order to minimize the 
overlap matrix elements that are truncated in tight-binding 
calculations. In this study, we use N = 22 spinor maximally-
localized Wannier functions (MLWFs) [10] as basis functions 
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for each MoS2 monolayer primitive unit cell. These MLWFs are 
a set of orthogonal functions constructed using linear 
combinations of Bloch functions from density functional theory 
(DFT) calculation. The total real-space spread of these functions 
is minimized through an iterative minimization scheme. 

To generate the desired MLWFs, non-collinear DFT 
calculations on a MoS2 monolayer were first performed using 
OpenMX [11]. The local spin density approximation of 
Ceperley-Alder (LSDA-CA) [12] is used for the exchange-
correlation functional within these intra-layer calculations. The 
kinetic energy cutoff and k-mesh size are set to be 200 Ryd and 
12×12×1 respectively. The MoS2 monolayer structure is 
constructed using experimental data a = 3.160 Å and c = 3.172 
Å [13], with which the band gap can be nicely reproduced [14]. 
The band gap we calculated is about Eg = 1.8 eV, in accordance 
with the results in [14]. 

Previous DFT studies [15,16] show that the energy bands of 
a MoS2 monolayer near the band gap are formed primarily from 
the Mo-4d and S-3p orbitals. We thus use these 22 orbitals 
including spin up and down as trial orbitals and choose an inner 
energy window between −7 eV and 5 eV for the construction of 
22 MLWFs for each primitive unit cell. Ten of these MLWFs 
are centered about the Mo atoms and retain the d-orbital 
features, and six are centered about each of the two S atoms and 
retain the p-orbital features (Fig. 2(a)). The total spread, defined 
as ∑ (〈𝑟2〉𝑛 − 〈𝐫〉𝑛

2 )22
𝑛=1 , of these MLWFs is about 35 Å2, which 

means that on average each MLWF is well localized near its 
center with an expected radius about 1.26 Å. The overlap matrix 
elements between these MLWFs up to the 3rd nearest cells are 
also calculated. Fig. 2(b) shows the band structure calculated 
using these MLWFs and overlap matrix elements as the tight-
binding basis set and hopping potentials, respectively, as 
compared to the original DFT calculations. The band structure 
is accurately reproduced in the energy range within our interest 
by using these MLWFs as tight-binding basis functions. 

C. Calculation formalism for the exchange-coupled bilayer 

With a total of 44 MLWFs in each two-layer unit cell, we 
write for the tight-binding wave-function, 

  𝛗𝐑 = (𝜑𝐑,1, ⋯ , 𝜑𝐑,𝑁; 𝜑𝐑,𝑁+1, ⋯ , 𝜑𝐑,2𝑁)T = (
𝛗𝐑,T

𝛗𝐑,B

) (2) 

in (1). The Schrödinger equation then is 

  
Fig. 2. (a) Isosurface plots of an S-centered pz-like MLWF (top) and a Mo-
centered dxz-like MLWF (bottom), plotted with VESTA [17]. Positive values 
are in red and negative values are in green. Only the real part is plotted. The 
imaginary part is small compared to the real part. (b) Comparison of the band 
structure obtained from DFT calculations with that calculated using a tight-
binding basis of MLWFs. The Fermi level serves as the zero energy reference. 
The temperature is 300 K. 

 
∑ 𝐇𝐑𝐑′𝛗

𝐑′
(𝛽)

𝐑′

= 𝐸(𝛽)𝛗𝐑
(𝛽)

 (3) 

where β = {k,α} represents a single electron state with wave-
vector k and band index α. Here we have assumed the in-plane 
scale of the two layers to be large enough to apply Bloch 

theorem which gives 𝛗𝐑
(𝐤,𝛼)

= 𝑒𝑖𝐤∙𝐑𝛗𝟎
(𝐤,𝛼)

, where 𝟎 labels the 

lattice site at origin, so that (3) can be reduced to a secular 

equation for 𝛗𝟎
(𝛽)

 and associated energy 𝐸(𝛽). 

    As for the graphene system in [18], the Hamiltonian of (3) 
takes the form,  

          𝐇𝐑𝐑′ = [
𝐇𝐑,T;𝐑′,T 

− 𝑞𝑉T𝐈 𝐇𝐑,T;𝐑′,B

𝐇𝐑,B;𝐑′,T 𝐇𝐑,B;𝐑′,B − 𝑞𝑉B𝐈
] (4) 

Here, 𝐇𝐑,T;𝐑′,T  and 𝐇𝐑,B;𝐑′,B  are the intra-layer tight-binding 

Hamiltonian of each MoS2 monolayer obtained from the DFT 
calculations as described in Section II.B; I is the identity matrix 
and q is the magnitude of the electron charge. The local Hartree 
potential and any variations in the intra-layer exchange-
correlation potential with carrier concentration are described by 
local electrostatic-like potentials of top layer (VT) and bottom 
layer (VB), respectively. In our simulation, with zero interlayer 
bias (zero interlayer Fermi level difference), these potentials are 
set to create an electron concentration n in the top layer and a 
hole concentration p in the bottom layer. Once set, VT and VB 
remain constant in the following calculations. In practice, these 
potentials can be controlled by doping and/or by external gates. 
Exciton condensation is favored by balanced carrier 
concentrations, n = p. Thus, VT and VB are carefully chosen to 
achieve this condition, at least initially. No “bare” single-particle 
coupling potentials are considered between the layers. Instead, 
𝐇𝐑,T;𝐑′,B  is just the interlayer Fock exchange interaction 

approximated as 

       𝐇𝐑,T;𝐑′,B = −
𝑞2 (4𝜋𝜀𝑟𝜀0)⁄

|𝐫𝐑,T − 𝐫𝐑′,B|
∑ 𝑓(𝛽′)𝛗𝐑,T

(𝛽′)
𝛗

𝐑′,B

(𝛽′)†

𝛽′

 (5) 

and similarly for 𝐇𝐑,B;𝐑′,T, on which condensate formation rests. 

Here 𝐫𝐑,T(B)  denotes the centers of the MLWFs on the top 

(bottom) layer in the unit cell labeled by R and implicitly 
incorporates an interlayer separation d in addition to in-plane 
position; f is the Fermi-Dirac distribution function. 

The Schrödinger equation (3) and the Fock exchange 
interaction (5) must be solved self-consistently. We employed 
an iterative method as follows: Given some small initial 
perturbations in the Fock interaction matrix, (3) can be solved 
for each state β. Since different states are independent in (3), 
they can be calculated by different computer processors. 
Therefore parallelized computation is readily used to reduce 
computation time. After all states are obtained, they are used to 
recalculate the Fock interaction of (5). The new Fock interaction 
is then used to recalculate the electron states β. This process is 
repeated until convergence is achieved. 

III. RESULTS 

A. Condensate formation 

Exciton condensate formation in bilayer systems is 
characterized by a self-consistent delocalization of the wave-

(a) (b) 
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functions 𝛗𝐑
(𝛽)

 and associated enhancement of the exchange 

interaction [6,18]. One measurable result of this enhancement is 
a band gap opening or, in this case, enhanced opening of an 
existing gap. Fig. 3(a) shows the simulated band structure of this 
bilayer system at room temperature with n = p = 5×1012 cm-2 
initially, with and without the Fock interaction that mediates 
condensate formation. A much larger nominally interlayer band 
gap of about 250 meV can been seen in the presence of 
condensate near the band edges (K points), compared to the 
original band gap of about 65 meV. Fig. 3(b) illustrates the 
delocalization between the layers in the states β near the band 
edges at the K and Kꞌ points. The conduction band minimum has 
16% contribution from the bottom, nominally hole, layer and the 
valence band maximum has 44% contribution from the top, 
nominally electron, layer. However, states far from the band 
edges remain strongly localized to one or the other layer, and 
contribute much less to the condensation, accordingly. 

B. Strength of condensate 

In [18], the coherence-induced band gap size is used as a 
measure of the condensate strength in the bilayer graphene 
system. However in this MoS2 system there can be a preexisting 
gap—or band overlap—whose size depends on the input 
parameters VT and VB. Thus this measure of the condensate 
strength is modified as the difference in band gaps, Eg,f − Eg,i, 
between the band structure with (“final state” labeled “f”) and 
without (“initial state” labeled “i”) condensate. 

 

 
Fig. 3. (a) The band structure of the bilayer MoS2 system with (black dash-

dotted lines) and without (color dotted lines) Fock exchange interaction at 

temperature T = 300 K. In the latter one, red and blue represent states localized 
to the top and the bottom layer, respectively. The other parameters are εr = 3, d 

= 1 nm, and, initially, n = p = 5×1012 cm-2. (b) Associated contributions of top 
layer and bottom layer components of the wave-functions to the lowest 

conduction band and topmost valence band of the Fock-exchange coupled 

system, showing delocalization of the wave-functions between layers near the 
K and Kꞌ points. (The k-space resolution is much finer than the symbol spacing.) 

Fig. 4 shows the dependence of the thus-measured 
condensate strength on various parameters. The condensate 
strength attenuates with increasing interlayer separation d, and 
dielectric constant εr as expected due to the weakening of the 
underlying interlayer Coulomb interaction. The condensate 
strength also attenuates and eventually collapses entirely at a 
“critical temperature” Tc for this condensate, much as for 
conventional superconductivity but, at least under the 
assumptions made here, at potentially much larger temperatures. 

C. Charge density dependence 

Larger initial carrier concentrations also yield stronger 
condensates. Although they remain nearly balanced, the final 
charge densities in the layers are much greater than the initial 
carrier concentrations (Fig. 5). However, these layer charge 
densities are not from free carriers (electrons in the conduction 
band and vacancies in the valence band) of which few remain 
because the greatly enhanced energy gap about the Fermi level 
(zero eV reference). Rather, charge results from the 
delocalization of near-valence-band-edge states between the  
layers that transfers negative charge from the bottom layer to the 
top layer (See again Fig. 3(b)). 

Although the band gap differences between initial state 
(without condensate) and final state (with condensate) change 
accordingly to initial carrier concentrations, the band gap in the 
presence of the condensate is a relative weak function of the 
charge densities as shown in Fig. 6. Even in the case when the  

 
Fig. 4. The condensate strength as a function of (a) interlayer separation; (b) 
dielectric constant; and (c) temperature. If not an explicit variable in the 

figures, the parameters are T = 300 K, εr = 3.0, d = 1 nm, and initially, n = p 

= 5×1012 cm-2. 
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initial conduction band and valence band overlap with each 
other, the condensate band gap still resides in a range between 
250 meV and 300 meV. In other words, there is a roughly 
constant minimum binding energy required to ionize an exciton 
(create an electron hole pair), which is roughly that of an 
effective-mass-based calculation of a single electron-hole pair 
interlayer exciton binding energy [19]. 

IV. CONCLUSION 

We illustrate the essential physics of exciton condensate 
formation between two dielectrically separated MoS2 
monolayers through simulations. The interlayer Fock exchange 
interaction that mediates condensate formation is incorporated 
within tight-binding simulations with an intra-layer MLWF 
basis set and coupling potentials derived from DFT calculations. 
While we can readily produce room-temperature condensates in 
these simulations, detailed screening and other considerations 
not addressed here could limit formation to lower temperatures 
[9].  Here we focus on qualitative physics and essential trends. 
Closer layer proximity, low-κ interlayer dielectric, and higher 
carrier concentration will be preferable for the formation of 
condensate as all increase the Coulomb interaction that underlies 
the Fock exchange interaction. However, charge densities are 
enhanced by condensate formation for fixed layer potentials. In 
practice, this result would mean still larger associated electric 
fields to create the given layer potentials, or quantitatively more 
limited condensate formation. As noted earlier, the use of 
dissimilar TMD layers with staggered or broken gap band 
alignments could minimize the required interlayer fields. 
Although the material system used here is simplified, the basic 
method could be modified easily to model similar systems with 
such dissimilar TMD materials. Work is underway to extend this 
basic tight-binding approach to investigate transport properties 
through finite systems, although perhaps with simpler tight-
binding models for larger systems. 
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Fig. 5. Layer charge densities—associated with delocalization between layers 
of the near valence band-edge sates—in units of the electron charge q and 
condensate strength, both after condensate formed as a function of equal initial 
charge densities. The parameters are d = 1 nm, T = 300 K, and εr = 3. 

 
Fig. 6.    Initial and the final nominally interlayer band gaps, as measured 
from the band edges. A negative initial band gap indicates the overlap of the 
conduction band of one layer and valence band of the other. The simulation 
parameters are d = 1 nm, T = 300 K, and εr = 3. 
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