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Abstract—An open boundary-conditions full-band quantum
transport formalism with a plane-wave basis based on empirical
pseudopotentials is used to self-consistently simulate transistors
in the sub-1 nm technology node, with one-dimensional silicon
nanowires, armchair-edge graphene nanoribbons, and zigzag-
edge carbon nanotubes as the channel. The electrostatic potential
energy and charge density distribution are shown. Current-
voltage characteristics of these devices are obtained.

I. INTRODUCTION

For the upcoming ultrascaled CMOS field-effect transistors
(FETs), the characterizing dimension of the channel, such as
the body size of the materials Wbody, the effective oxide
thickness (EOT), and the physical gate length Lg, decreases
significantly comparing to the current stage of the technology
development [1]. Due to quantum confinement effects, the
materials in a smaller dimension show different energy band
structure and band gap in contrast with the bulk form of the
materials, which can then affect the transport properties of
transistors made out of them. Another feature in the revolution-
ary device design is using an efficient gating structure, such as
a geometrically fin-shape [2], [3] or a gate-all-around (GAA)
structure [4], [5], to enable stronger electrostatic control in the
gate region [6] and overcome the short-channel effects (SCEs)
and the drain-induced barrier-lowering (DIBL) effect. In this
paper, we present a state-of-the-art theoretical simulation
of quantum transport in GAAFETs using 1D nanomaterials
armchair-edge graphene nanoribbons (aGNRs) [7], carbon
nanotubes (CNTs) [8], [9], and silicon nanowires (SiNWs)
as the channel. Current-voltage characteristics of FETs using
these different materials are presented and discussed. An
in-house three-dimensional Schrödinger/Poisson simulator is
applied to perform the simulations self-consistently.

II. THEORY

When simulating electron transport in semiconducting de-
vices, the open boundary-conditions plane-wave full-band
quantum transport formalism [10]–[12] is applied using the
envelope-wavefunction approximation to deal with the slowly
changing external potential along the electron transport direc-
tion z. Essentially, linear systems of the form

(H− EI + ΣL + ΣR)φ = [RHS]
inj
L + [RHS]

inj
R (1)

are solved to obtain the envelop wavefunctions for different
drain-source bias VDS and gate-source bias VGS. In Eq. (1),
H is the Hamiltonian for the closed system using empirical

pseudopotentials which incorporates the lattice potential and
the external potential effect, E is the injection energy of elec-
trons, I is the identity matrix, ΣL and ΣR are the self-energies
of the contacts which represent the termination of the device
with the source and drain reservoirs using the open-boundary
conditions, φ is the envelope wavefunction in the reciprocal
space which in each z is composed of the number of plane-
wave basis NG, φE(z) = [φG1

(z) φG2
(z) · · φGNG

(z)]T,
and [RHS]inj

L and [RHS]inj
R are the terms representing the

amplitudes of the waves injected from the contacts.
To calculate the charge density, we perform at first a 3D

Fourier transform of φE(z) at each z for each injection
energy E = E(kz) to obtain the wavefunctions ψE(z, r||)
in the real space and then average the square of the real-space
wavefunction |ψE(z, r||)|2 over z in one unit cell. With the
average |ψE(z, r||)|2 in all z forming the 3D wavefunctions
|ψE(r)|2, the charge density is calculated as

n(r) =
1

π

∑
ν=L,R

∫
1stBZ

|ψE(r)|2 F (E,EνF ) dkz, (2)

since we account for electron injection from the left (ν = L)
and right (ν = R) contacts and the occupation of the injection
energy state is determined by the Fermi-Dirac distribution
function F (E,EνF ), with respect to the Fermi level in the
contacts EνF .

In order to do a self-consistent calculation, we need to
update the external potential V (r) by solving the three-
dimensional Poisson’s equation

∇2V (r) =− e (ND(r)− n(r)−NA(r) + p(r))

ε
(3)

with n(r) calculated in Eq. (2) until the convergence is
satisfied with some criterion. In Eq. (3), ND(r) is the donor
density, NA(r) is the acceptor density in the device, p(r)
is the hole density calculated similar to n(r), and ε is the
dielectric constant. The self-consistent scheme for solving the
Schödinger and Poisson’s equations is illustrated in Fig. 1.

After convergence is obtained, the current density is evalu-
ated using

j(z) =
ih̄

2m

∑
G

(φG(z))?
(

dφG(z)

dz
+ iGzφG(z)

)
(4)

and the device current is estimated with the Fermi-Dirac
distribution as well.
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Figure 1: Flow chart for solving the one-dimensional full-band
plane-wave quantum transport Schrödinger equation and the
three-dimensional Poisson’s equation self-consistently.

III. RESULTS

A. Silicon nanowire FETs

For SiNWFETs, we choose a device length L =21.72 nm,
a Lg=6.52 nm, and an EOT=0.43 nm. Figure 2a shows a wire
which has three atomic layers on the sides and we define it
as a (3×3)-SiNW. The cross-sectional body size is determined
by the side length which measures 0.34 nm. Figure 2b shows
the size dependence of the band gap for [001]-oriented SiNWs
with square-shape cross-sections.

For simulating this device and following devices, the donor
density in the source and drain contact is set as 1× 108m−1

and the acceptor density in the gate is set as 1 × 108m−1

as well. The charge density and potential energy distributions
after the self-consistent calculation at the simulated bias are
shown respectively in Figs. 3 and 4 one-dimensionally along
z, after averaging the three-dimensional distribution of them
in the cross-section of each z. The current determined after
the self-consistency for all the applied biases is shown in
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Figure 2: (a) Cross-sectional view of a [001]-oriented (3×3)-
SiNW, with the silicon body passivated by hydrogen and
surrounded by vacuum. Atoms are indicated by red dots
superimposed on a contour plot of |ψ(z, r||)|2 for z located in
the contact without the effect of external potential V (r). (b)
Body-size dependence of the band gap for square cross-section
SiNWs oriented in the [001] direction.
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Figure 3: Self-consistent electron density distribution of a
[001]-oriented (3×3)-SiNWFET when applying the same
drain-source bias VDS = 0.1 V and different gate-source
bias VGS. Charge neutrality can be observed in the extended
source/device contact and drain/device contact. A high VGS

stops carrier flow from the source to the drain in the device.
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Figure 4: Self-consistent electrostatic potential energy profile
of the (3×3)-SiNWFET when applying the same VDS = 0.1
V and the VGS ranging from -0.15 V to 0.05 V.

Fig. 5. An excellent subthreshold slope (SS) of 76 mV/decade
is achieved for this device.
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Figure 5: IDS-VGS characteristics of the (3×3)-SiNWFET at
VDS = 0.1 V. This device shows a subthreshold swing (SS) of
76 mV/decade.
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Figure 6: (a) Cross-sectional view of a 6-aGNR terminated
by hydrogen. Atoms are indicated by red dots superimposed
on a contour plot of |ψ(z, r||)|2. (b) Ribbon-width dependence
of the band gap for aGNRs.

B. Armchair-edge GNRFETs

For aGNRFETs, the device length is chosen as L=17.06
nm, the gate length is Lg =5.12 nm, and the EOT=0.43 nm.
Figure 6a shows a 6-aGNR model with six carbon dimer lines
in the center and the hydrogen termination on both edges.
The body size is characterized with its width 0.62 nm. Fig. 6b
shows the width dependence of the band gap.

The charge density and potential energy profiles are shown
in Figs. 7 and 8, respectively. Since the 3-aGNR has a smaller
effective mass than the (3×3)-SiNW, when the electron col-
lides elastically with the potential barrier, it reflects further
away from the gate contact for the 3-aGNR than for the SiNW
and more carriers accumulate in the region close to the gate
which introduces the tiny bump in Fig. 7 and the quantum
wells in Fig. 8, whereas it is flat in this region in Figs. 3 and
4. The device characteristics of the 3-aGNRFET are shown
in Fig. 9. A poor SS of ∼120 mV/decade is observed.

C. Zigzag CNTFETs

The model and the diameter dependence of the band gap of
zCNTs are shown in Figs. 10a and 10b, from which we ob-
serve that the smallest semiconducting tube is the (10,0)-zCNT
owning a diameter D = 0.78 nm and a band gap Eg = 0.22 eV.
This diameter results in smaller reciprocal-space translation
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Figure 7: Self-consistent electron density distribution of a 3-
aGNRFET with VDS = 0.1 V and different VGS ranging from
-0.15 to 0.10 V. Charge neutrality is satisfied in the extended
source and drain contact region. And in the region close
to the gate contact, the electron density is higher than the
doping density, unlike the neutrality observed for the (3×3)-
SiNWFET.
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Figure 8: Self-consistent potential energy distribution of the 3-
aGNRFET applied with VDS = 0.1 V and different VGS. This
device shows quantum wells in the region close to the gate,
which is different from the (3×3)-SiNWFET.
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Figure 9: IDS-VGS characteristics of the 3-aGNRFET at VDS

= 0.1 V. This device shows a SS of ∼120 mV/dec.

vectors and a larger number of the plane-wave basis NG when
using the same Ecutoff as what’s used for aGNR. Currently,
a (10,0)-zCNTFET is simulated with a shorter device length
L=8.52 nm, a shorter gate length Lg=2.13 nm, an EOT=0.43
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Figure 10: (a) Cross-sectional view of a (10,0)-zCNT. A
contour plot of |ψ(z, r|||2 in the cross section is shown. (b)
Diameter dependence of the band gap for zCNTs.

10
-2

10
-1

10
0

10
1

 0  1  2  3  4  5  6  7  8

E
le

c
tr

o
n
 d

e
n
s
it
y
 (

×
 1

0
8
 /
m

)

z (nm)

-0.15 V
-0.10 V
-0.05 V

0
0.05 V

Figure 11: Self-consistent electron density distribution of a
(10,0)-zCNTFET with VDS = 0.1 V and different VGS applied.
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Figure 12: Self-consistent potential energy distribution of the
(10,0)-zCNTFET with VDS = 0.1 V and different VGS. This
device shows quantum wells in the region close to the gate
similar to the 3-aGNRFET since it also has a smaller effective
mass compared to SiNWs.

nm, and a Ecutoff=10 Ry to decrease the matrix size so that
the simulation can be implemented in a shorter running time.
The preliminary results show the charge density and potential
energy distribution in Figs. 11 and 12, respectively. We find
that the zCNTFET shows the same features as the aGNRFET.
The transport properties of the device are shown in Fig. 13

from which a SS ∼190 mV/dec is extracted.

10
-2

10
-1

10
0

-0.15 -0.1 -0.05  0  0.05

I D
S
 (

µ
A

)

VGS (V)

VDS=0.05 V

Figure 13: IDS-VGS characteristics of the (10,0)-zCNTFET at
VDS = 0.05 V. This device shows a SS of ∼190 mV/dec.

IV. CONCLUSIONS

Gate-all-around transistors in the sub-1 nm technology node
using three kinds of 1D nanomaterials in the channel are
simulated. The ballistic performance is obtained with their
electrical properties shown. Silicon nanowires show the best
feature in terms of the subthreshold swing.
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