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Abstract—A consistent thermoelectroelastic description of pi-

ezoelectric semiconductors with finite deformation is presented.  
By including both kinematic and constitutive nonlinearities as 
well as a proper treatment of the electrostatic conditions at free 
surfaces, the theory allows situations with large strains to be 
modeled more accurately.  In addition, the theory is rotationally 
invariant unlike the linear theory, and can therefore be applied 
to semiconducting MEMS structures that involve large mechani-
cal displacements.  These points are illustrated using numerical 
simulations of several different III-N devices of technological 
interest.  
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I. INTRODUCTION 
In previous work a continuum description of GaN HEMTs 

was presented in which diffusion-drift electron transport was 
fully coupled to both mechanical and thermal variables, with 
the former accounting for the strong piezoelectricity of the III-
V materials and the latter allowing inclusion of heating effects 
that are often important in power devices [1].  The focus of that 
work was GaN HEMT failure mechanisms, and especially an 
investigation of the cracking phenomenon known to occur near 
the drain edge of stressed devices.  As is typical in such anal-
yses, in order to keep the treatment relatively straightforward 
and with known material parameters, it was assumed that vari-
ous higher order terms associated with finite mechanical de-
formation could be neglected and that linear theory was there-
fore appropriate.  But given that the strain levels in such devic-
es can be quite high (e.g., 1 to 2% or more), the validity of this 
infinitesimal strain assumption must be regarded as uncertain, 
if not dubious.  A related flaw is the lack of rotational invari-
ance in the constitutive equations used in all earlier work that 
leads to errors in simulations involving large rotations (but 
possibly infinitesimal strains) such as occur in various MEMS 
devices.  The purpose of the present paper is to set out the non-
linear theory needed to treat large displacement/strain situa-
tions, and then to the extent possible (e.g., since many of the 
nonlinear coefficients are not accurately known), apply it to 
various GaN device problems with the goal of assessing the 
sizes of the errors incurred by the linearization and the possible 
importance of nonlinear effects such as electrostriction.  More 
broadly, it is hoped that this general framework for treating 
semiconductors with large deformations might prove useful as 
a tool for analyzing other practical devices where “extreme” 
elastic states are known to serve a variety of electronic purpos-

es, e.g., mobility enhancement via band structure distortion, or 
for MEMS devices where there is significant rotational motion.  

II. FINITE DEFORMATION THEORY  
When mechanical deformations cannot be regarded as in-

finitesimal  —  and so are termed finite  —  it becomes essen-
tial to develop elasticity and related theories in a manner con-
sistent with thermodynamics and with certain principles of 
symmetry and invariance [2].  For electroelasticity the proper 
treatment was first given by Toupin in 1956 using variational 
methods [3], and our equations largely reduce to his in the iso-
thermal, non-semiconducting case, although our presentation is 
closer in spirit to the balance law approach of Tiersten [4].  In 
the abbreviated discussion given herein, Cartesian coordinates 
are used with vectors and tensors expressed in indicial notation, 
and with commas denoting partial differentiation. 

At a continuum level, thermoelectromechanical phenomena 
in a piezoelectric semiconductor are governed by partial differ-
ential equations describing the coupled interactions of electro-
elasticity, diffusion-drift electron transport, and heat conduc-
tion.  In steady-state these equations are [1]:    

               𝜏!",!! + 𝜏!",!! = 0                          𝐷!,! = 𝑞 𝑁 − 𝑛                             (1𝑎) 

𝐽!,!! ≡ 𝑛𝑣!! ,! = 0                𝐽!! = −𝑛𝜇! 𝜑,!! + 𝐸!                 (1𝑏) 

𝑞!,! = 𝐽!! 𝜑,!! + 𝐸!                                                             (1𝑐) 

where 𝜏!"! is the mechanical (Cauchy) stress, 𝜏!"!  is the electro-
static Maxwell stress, 𝐸! is the electric field, 𝐷! is the electric 
displacement, the right side of (1a)2 is the space charge inside 
semiconductor regions with n being the electron density and N 
being a bulk charge density associated with ionized impurities, 
𝐽!! is the electron number current density, 𝜇! is the electron 
mobility, and 𝑞! is the heat flux.  The right-side of (1c) is the 
Joule heating associated with the electron flow, that neither 
(1b)1 nor (1c) contains a generation-recombination term means 
that this phenomenon has been neglected, and a term account-
ing for the force exerted by electron pressure on the lattice has 
been neglected from (1a)1.  The full set of equations in (1) ob-
viously apply only to semiconductors; in solid insulators no 
electron transport is allowed, in metals only heat conduction 
occurs, and in the surrounding air/vacuum only the electrostat-
ics is considered.     

To complete the system in (1) it is necessary to provide 
constitutive equations that describe various aspects of the mate-
rial response such as the relationships between stress and strain 
and between polarization and electric field.  For problems in-
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volving finite deformation it is important to formulate these 
constitutive equations in such a way that the responses do not 
change when the material undergoes rigid motion [2,3].  To 
this end, one needs to be more precise in describing the me-
chanical deformation of the material mathematically.  In par-
ticular, we represent this kinematics by the usual mapping:   

  𝑦! = 𝑦! 𝑋!,𝑋!,𝑋!, 𝑡 ,                𝑖 = 1, . . . ,3                                  (2) 

where the 𝑦! (with a small letter index) give the present (or 
Eulerian) coordinates of the material and the 𝑋! (with a capital 
letter index 𝐿 = 1, . . . ,3) define the reference (or Lagrangian) 
coordinates of the material.  Equation (2) expresses how the 
present position 𝐲 of a material point that was initially at 𝐗 
evolves over time t as a result of the deformation.  Assuming 
this behavior is “smooth” so that the function in (2) is continu-
ous and differentiable, one can define the deformation gradient 
as the two-point tensor 𝑦!,! = 𝜕𝑦! 𝜕𝑋!.  To create constitutive 
equations that are rotationally invariant all that is needed now 
is to formulate them in reference coordinates.  For this purpose, 
we employ the standard rotationally invariant measures of 
strain and electric field [2,3].  To develop expressions for the 
(Piola-Kirchoff) stress tensor and polarization vector in terms 
of 𝑆!", 𝑊!, n, and T, and for 𝜑! on n and T, we base them on 
an electric Gibbs free energy function Ψ and an electron func-
tion 𝜀! with the former expression including elastic and elec-
tric terms to third order [4].  The equations that result are: 

  
𝜏! = 𝜏!! + 𝐶!" 𝑆! − 𝛼! 𝑇 − 𝑇!   −   𝑒!"𝑊!             

                        −
1
2
𝑏!"#𝑊!𝑊! −   𝑘!"#𝑊!𝑆! + 𝐶!"#𝑆!𝑆!

          (3𝑎)

                                  
 

𝑃! = 𝑃!! − 𝜆!𝑇 + 𝜒!"𝑊! + 𝑒!"𝑆!                                                    

                                    +𝑏!"#𝑊!𝑆! + 𝜒!"#𝑊!𝑊! +
1
2
𝑘!"#𝑆!𝑆!

      (3𝑏) 

where the indices A, B, and C range from 1 to 6 according to 
the usual shorthand, the dependence on the electron density is 
that for the electron gas equation of state when Maxwell-
Boltzmann statistics are appropriate, and the last four terms are 
the additional constitutive nonlinearities considered in this pa-
per.  The material constants 𝐶!", 𝐶!"# , 𝜒!", 𝜒!"#, 𝑐!, 𝑒!", 
𝑘!"#, 𝑏!"#, 𝛼!, and 𝜆! are the second- and third-order elastic, 
second- and third-order electric susceptibility, specific heat, 
piezoelectric, first odd electroelastic, electrostrictive, thermal 
expansion, and pyroelectric coefficients, respectively.  The 
quantities 𝜏!"!  and 𝑃!! are the intrinsic stress and spontaneous 
polarization, respectively, and 𝑇! is a reference temperature.  
To make use of (3a) and (3b) in (1) it is necessary to transform 
them back to present coordinates using (3).  Also note that (3a) 
and (3b) differ from expressions used previously in two re-
spects that can become important when the displacements are 
not small.  The first is associated with the nonlinear strain and 
electric field, and are referred to as kinematic nonlinearities.  
And the second enters through the last three terms in (3a) and 
(3b) and are known as constitutive nonlinearities.  The particu-
lar effects included in (3) are called third-order electric suscep-
tibility (𝜒!"#), electrostriction (𝑏!"), electroelastic effect 
(𝑘!"#), and third-order elasticity (𝐶!"#), and some coefficient 
values as estimated from density functional theory [5].  All else 
is taken to be as discussed in [1], including the remaining con-

stitutive equations and values for their coefficients.  The addi-
tional terms needed for time-dependent problems are also much 
like those presented in [1]. 

A final element of the theory is the boundary conditions, 
and these are treated as in [1] except for the conditions where 
the solid materials abut air/vacuum since the fundamental 
mapping in (2) is not defined in the latter [4].  In effect, this 
represents a third type of nonlinear correction in the theory.  
An elegant method for handling this aspect is the ALE (Arbi-
trary Lagrangian-Eulerian) technique [6] wherein the electro-
statics in the air/vacuum region is solved for with the interface 
position being determined as part of the solution.  To solve 
boundary value problems within the nonlinear theory we use 
the finite-element method as implemented in the powerful 
COMSOL package [7].  Especially convenient for our work is 
that this package offers the ALE method as an option. 

III. SIMULATION RESULTS 
To illustrate the finite deformation theory of this paper and 

to assess the importance of its nonlinearities, we consider sev-
eral GaN device situations, all modeled in 2-D using a plane 
strain approximation with the epitaxial strain in the third direc-
tion incorporated analytically as in [1].  Also for purposes of 
efficiency, as in [1] we embed the electrically active region in a 
larger thermomechanical structure.    

The first example is a conventional GaN HEMT with a 
25nm Al0.3Ga0.7N barrier that was studied extensively in [1] 
using linear theory.  In Fig. 1 we compare simulated ID-VG and 
ID-VD characteristics obtained using the full nonlinear theory 
with those obtained from linear theory.  The nonlinear correc-
tions are found to be small (<10%) but with non-negligible 
electrical consequences with ΔVT ~ 0.2V and ΔImax ~ 5%.  Fur-
ther simulations reveal that the electrical corrections are largely 
constitutive in origin and derive mainly from the nonlinear 
polarization.  Not surprisingly an analogous device that had a 
10nm AlN barrier showed a larger nonlinear correction with 
ΔVT ~ 0.4V.    

We next consider the stress concentrating effect of a small 
crack in the AlGaN barrier of the device as was studied previ-
ously using linear theory [1].  As shown in Fig. 2, under high-
power conditions (VG = 0V, VD = 20V) the tensile stress at the 
crack tip is calculated using the nonlinear theory to be 13GPa 
which is 1.1GPa smaller than that estimated using linear theory 
[1].  From the nonlinear simulation we also find the device to 
be displaced upward by about 7nm as a result of thermal ex-
pansion.   

 The next example is a “GaN-on-Air” HEMT concept in 
which cooling is provided by a CVD nanocrystalline diamond 
over-coating [8].  Fig. 3 compares the drain characteristics for 
this device as computed by the linear and nonlinear theories.  
The temperature field and heat flux streamlines are shown in 
Fig. 4.  With a 0.5µm thick layer of NCD, the peak temperature 
is elevated by only about 40oC over a conventional HEMT 
when VD = 10V. 

As a final example, we simulate an AlGaN/GaN MEMS 
cantilever operating as a nanogenerator [9].  This device har-
vests mechanical kinetic energy by converting it into electrical 
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energy.  Fig. 5 shows solution profiles for the electric potential, 
electron density, and on-axis stress that exist in the cantilever 
when under mechanical load.  The potential derives largely 
from piezoelectrically generated charge that in turn enhances or 
depletes mobile charge from the GaN as illustrated for a differ-
ent device geometry in Fig. 76; this figure also shows the range 
of validity of linear simulation.  When driven by a sinusoidal 
load, these charge variations translate into an ac current.  It 
should be noted that because of the particular cantilever design 
and the size of the mechanical load, maximum tensile stresses 
can rise as high as 10GPa and may well exceed the tensile 
strength of the materials [1].   

IV. FINAL REMARKS  
The equations of the nonlinear thermoelectromechanical 

theory of piezoelectric semiconductors are presented and dis-
cussed.  The theory is then illustrated with applications to sev-
eral GaN device situations with emphasis on its departures 
from linear theory and their origins.  In general, the nonlinear 
theory is apropos when the mechanical strains and/or the me-
chanical rotations are large.  
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  Fig. 1. Simulated (a) drain and (b) transfer 
characteristics for an AlGaN/GaN HEMT and 
comparing linear and nonlinear theory. 

Fig. 2.  Stress in a AlGaN/GaN HEMT with a 
crack at the drain edge of the gate.  Nonlinear 
correction to the maximum is about 1GPa.  Note 
upward displacement due to thermal expansion. 
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Fig. 5.   Solution profiles for (a) electric potential, (b) electron density, and (c) on-
axis stress for an AlGaN/GaN nanogenerator with force applied to the left end.  

Fig. 6.  Stored charge vs applied force on a 
nanogenerator and comparing linear and non-
linear results.  

Fig. 4.  Temperature distribution and heat flux stream-
lines in the GaN-on-Air device with VD = 10V.  

Fig. 3.  I-Vs of the GaN-on-Air device 
comparing linear and nonlinear simulations. 

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

D
ra

in
 C

ur
re

nt
 (m

A
/m

m
)

Drain Voltage (V)

V
G
 = 0V

GaN-on-Air HEMT

Nonlinear

Linear

0

2 108

4 108

6 108

8 108

1 109

1.2 109

-20 -10 0 10 20 30 40

In
te

gr
at

ed
 C

ha
rg

e 
(m

m
-1

)

Force 

Nonlinear

Linear


