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Abstract—Analytical models for trap-limited conduction have
successfully been applied to the case of phase-change memory
devices, providing an effective interpretation of the main charge-
transport properties of chalcogenide materials. However they
have been derived under the simplified hypothesis of one-
dimensional continuum systems, and their extension to realistic
geometries is anything but trivial. In this work we exploit a three-
dimensional model for trap-limited conduction that makes use
of a non-linear resistance network to implement the transport
processes of the analytical models. Results correctly compare
to experimental data and connect the transport properties to
detailed microscopic information.

I. INTRODUCTION

The largest part of today’s non-volatile memory market is
dominated by FLASH memories, either in the NAND or in
the NOR configuration. According to the International Tech-
nology Roadmap for Semiconductors [1], this technology has
already reached its maximum stage of development. Further
enhancements aiming at increasing the storage capability and
achieving substantial savings of the energy consumption are
hampered by the intrinsic working principle of the floating
gate [2].

Semiconductor industries have been considering alternative
technologies in order to replace FLASH memories since at
least ten years. Memory concepts where the information bit
is encoded by means of a different resistance of the physical
bit have been widely investigated. The resistance change of
the memory bit can be obtained in several ways. The principal
mechanisms are an electrically-activated phase change for the
case of phase-change memories (PCM) [3], and the creation
of highly-conductive filaments within a highly resistive matrix,
as in oxide-based resistive memories (RRAM) [4] and in
conductive-bridge memories (CBRAM) [5]. A similar behavior
has also been observed in Ovonic materials [6], where the
large resistivity change is introduced by a negative differential
resistance. In general the Ovonic switch may be preliminary
to a subsequent phase-change, so that PCM are manufactured
with Ovonic materials like chalcogenides.

Phase-change memory prototypes where the metallic con-
tacts of a “traditional mushroom” architecture (i.e., heater and
top electrode) have been replaced with self-aligned carbon
nanotubes allowed to obtain the smallest memory bit to date,

with a strong prospective energy saving for next-generation
PCM [7].

The knowledge of the microscopic mechanisms controlling
conduction in switching chalcogenides is a key point in order
to take an even better advantage from their properties. Many
interpretations have been proposed in the literature (for a quick
review see, e.g., Refs. [8] and [9]), and none of them is
free from criticism. The trap-limited conduction scheme [10]
gained a general consensus after the assessment of a thermally-
activated transport mechanism until at least the threshold
point [11]. The inclusion of the trap-limited framework in a
hydrodynamic-like modeling approach confirmed that Ovonic
threshold-switching is a purely electronic phenomenon con-
nected to hot carriers [12].

Even though these models have been successfully applied
to the case of PCM with a good fitting of experimental data,
they have all been derived under the simplifying hypothesis of
one-dimensional (1D) continuum systems. When the memory
bit is shrunk down to few tens of nanometer or less, as in Refs.
[7] and [13], these hypotheses may not apply any longer, and
a more realistic three-dimensional (3D) description is needed.
The 3D-nHD model used in this paper combines the concept of
a three-dimensional resistance network to the hydrodynamic-
like trap-limited transport model above for amorphous mate-
rials [14]. Once coupled to the Poisson equation, this scheme
provides an effective and fast simulative framework that can
easily be applied to realistic cell architectures including also
non-conventional contacts.

II. THE MODEL

Numerical investigations on the atomic structure of chalco-
genide materials showed that they feature a large number of
defects [15]. As far as the transport properties are concerned,
these defects act as scattering centers and dominate the con-
duction mechanism below threshold. We consider these centers
as 𝑁 randomly distributed nodes of a 3D network, whose
connections exist when two nodes are closer than the cutoff
distance 𝑟𝑐𝑢𝑡. Two extra nodes (nodes 0 and 𝑁 +1) placed at
two opposite edges of the simulation domain play the role of
the contacts, and cover the entire contact surfaces. The current
𝐼 arriving at node 0 from the external circuit, or leaving node
𝑁 + 1 to the external circuit is prescribed.
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In order to write transport equations we conventionally
label a current 𝑖𝑖𝑗 as incoming to node 𝑗 from node 𝑖 when
𝑖 < 𝑗.1 The Kirchoff’s Current Law at the generic 𝑖-th node
reads:

𝐼𝛿0,𝑖+
∑
𝑗<𝑖

𝐼𝑗𝑖 =
∑
𝑗>𝑖

𝐼𝑖𝑗+𝐼𝛿𝑖,𝑁+1 𝑖 = 0, . . . , 𝑁+1. (1)

Even though Eq. (1) allows one to write 𝑁 + 2 relationships,
the set has rank 𝑁 +1 as the current injected from the circuit
at node 0 must be collected at node 𝑁 + 1 with no losses.

Currents 𝐼𝑖𝑗 can be expressed through proper transition
rates 𝑇𝑖𝑗 that mimic trap-limited conduction between nodes
𝑖 and 𝑗:

𝐼𝑖𝑗 = −𝑞(𝑛𝑖𝑇𝑖𝑗 − 𝑛𝑗𝑇𝑗𝑖), (2)

where −𝑞 is the charge of the electrons, and 𝑛𝑖 the population
sitting at the 𝑖-th node. Inserting Eq. (2) in Eq. (1) yields the
charge-flux balance:

𝐼

(−𝑞)𝛿0,𝑖 +
∑
𝑗 ∕=𝑖

𝑛𝑗𝑇𝑗𝑖 =
∑
𝑗 ∕=𝑖

𝑛𝑖𝑇𝑖𝑗 +
𝐼

(−𝑞)𝛿𝑖,𝑁+1. (3)

In order to estimate the transition rate 𝑇𝑖𝑗 in the present
model, one has to recall the basic ideas of trap limited
conduction:

1) a number 𝑛𝑖 of carriers populate the node 𝑖 of the
network. While sitting at a node, carriers belong to a
localized state with energy 𝑒𝑖;

2) a three-stage mechanism is responsible for carrier
transfer: carrier emission to a traveling state above the
conduction band mobility edge 𝐸𝐶 , propagation in
the traveling state towards another node and recapture
by the final node with a probability 𝑓(𝑟𝑖𝑗), depending
on the internode distance 𝑟𝑖𝑗 ;

3) the local field 𝐹𝑖𝑗 alters the height of the energy bar-
rier a carrier must overcome to be emitted, enhancing
the motion in one direction and hindering it in the op-
posite direction. The energy barrier is evaluated after
an effective distance ℓ from the emitting site [16];

4) carriers can gain energy from the field and release
energy to the lattice via phonon scattering.

The following transition rate encompasses the properties above
and has been adopted in the 3D-nHD model:

𝑇𝑖𝑗 =
𝑓 (𝑟𝑖𝑗)

𝜏0
exp

(
−𝐸𝐶 − 𝑒𝑖
𝑘𝐵𝑇𝐿

)
exp

[−𝑞(𝜑𝑖 − 𝜑𝑗)ℓ

𝑟𝑖𝑗 𝑘𝐵𝑇𝐿

]
, (4)

where 𝜏0, 𝑘𝐵 , and 𝑇𝐿 are a characteristic time of the transfer
process, the Boltzmann constant and the lattice temperature,
respectively. The local field is estimated by means of its first-
order approximation 𝐹𝑖𝑗 = (𝜑𝑗 − 𝜑𝑖)/𝑟𝑖𝑗 , with 𝜑𝑖 and 𝜑𝑗

the electrostatic potentials of the 𝑖-th and 𝑗-th nodes. For
simplicity, we have assumed 𝑓(𝑟𝑖𝑗) the step function within
the cutoff distance 𝑟𝑐𝑢𝑡.

Point 4) above allows one to write also energy flux equa-
tions, that define the steady-state value of the energy of the
carriers sitting at a given internal node. Since nodes 0 and

1This notation is just mathematical, without any connection with the
effective sign of the current, which can be either positive or negative (reversing
the concepts of incoming or outgoing current).

𝑁 + 1 represent the contacts, their population and energy is
fixed at the equilibrium values. Similarly to Eq. (3), in order
to derive the energy flux equations, one has to balance the
incoming energy gains at a given node 𝑖 from the other nodes
𝑗 of the network, modulated by the local field, to the energy
losses of the outgoing carriers and due to the energy relaxation
with the lattice:

∑
𝑗 ∕=𝑖

𝑛𝑗𝑇𝑗𝑖

[
𝑒𝑗 − 𝑞(𝜑𝑗 − 𝜑𝑖)

]
+

𝐼

(−𝑞)𝑒𝑖𝛿0,𝑖 =

= 𝑒𝑖

[∑
𝑗 ∕=𝑖

𝑛𝑖𝑇𝑖𝑗 +
𝐼

(−𝑞)𝛿𝑖,𝑁+1

]
+ 𝑛𝑖

𝑒𝑖 − 𝑒𝑖,𝑒𝑞
𝜏𝑅

,
(5)

with 𝜏𝑅 the energy-relaxation time constant and 𝑒𝑖,𝑒𝑞 the en-
ergy of a carrier at the 𝑖-th node under equilibrium conditions.

The solution of Eqs. (3) and (5) requires particular care due
to the strong non linearities of the equation terms as functions
of the unknowns 𝜑𝑖 and 𝑒𝑖. Moreover, in order to achieve self-
consistency between the nodal population 𝑛𝑖 and the electro-
static potential 𝜑𝑖, the Poisson equation must be invoked. A
multi-step iterative procedure has been implemented. At first,
Eqs. (3) and (5) are mutually solved for a prescribed current 𝐼
and for a fixed nodal population 𝑛𝑖, yielding the electrostatic
potentials on the network 𝜑𝑖 and the carrier energies 𝑛𝑖. This
step has been tackled by means of a Newton-Raphson (NR)
algorithm by which half of the unknowns are alternatively
kept fixed or updated. Once the solution has converged, a
finite-element (FEM) procedure is implemented to calculate
the carrier concentrations from the Poisson equation, using
the previously determined electrostatic potentials as Dirichlet
conditions. The finite-element grid involves of a large number
of nodes, part of which coincides with the transport network
nodes. The NR-FEM algorithm is cycled until global con-
vergence is achieved, which is usually obtained within few
iterations.

III. RESULTS

A. Stochastic analysis of the current vs. voltage characteristics

Experimentally, fluctuations of two kinds are found for
the measured voltage 𝑉 at a given input current 𝐼 . Large
fluctuations occurring in the first fires (burn-in or forming pro-
cess) [13] can be associated with the changes in the structure of
the amorphous matrix, initially created via sputtering and next
modified with crystallization/re-amorphization cycles via Joule
heating. These fluctuations progressively reduce and after few
tens of cycles they disappear. Then, only smaller fluctuations
are found. The latter can be explained by considering the
positions of the defects inside the amorphous matrix, that
slightly change at each crystallization/re-amorphization cycle.

These fluctuations can be simulated with the 3D-nHD
model: in order to check the 𝐼–𝑉 characteristics predicted by
the 3D-nHD model against experimental evidences, batches of
samples differing only in the positions of the network nodes
must be taken into account, and the variance of the results can
be estimated. In Fig. 1 we report the average 𝐼–𝑉 characteristic
from 50 samples along with the corresponding standard devia-
tion. Results are compared to recent experimental data obtained
for memory concepts with carbon-nanotube electrodes, which
represent an ultra-scaled prototype of a memory bit (∼ 10nm
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in diameter) [13]. The abrupt voltage drop at 𝐼 ∼ 350 nA
indicates that crystallization of the sample occurred, which
is not addressed by this version of the model. The good
agreement of the 𝐼–𝑉 characteristics in the sub-threshold
regime and up to the threshold point (i.e., d𝑉/d𝐼 ≈ 0) let
us extract the model parameters that are listed in the caption.
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Fig. 1. Statistical analysis of the current vs. voltage characteristics of a
memory prototype with carbon nanotube contacts (estimated size: 10× 10×
40 nm3) compared to experimental evidences [13]. The marked solid line is
the average value of 50 samples; the two dashed side lines indicate the upper
and lower limits determined by the standard deviation 𝜎. Parameters used for
fitting: 𝜏0 = 49.5 fs, 𝜏𝑟 = 56 fs, ℓ = 2.9 nm, 𝐸𝐶 = 0.3 eV, 𝑟𝑐𝑢𝑡 = 6 nm,
node concentration 1.2× 10−19 cm−3.

We notice that the 3D-nHD model is rather sensitive to the
interaction distance 𝑟𝑐𝑢𝑡; Fig. 2 shows the dispersion of the
calculated threshold point for progressively increasing values
of 𝑟𝑐𝑢𝑡 in the range 6-9 nm. Longer interaction distances
lead to narrower distributions for the threshold voltage and
to larger distributions for the threshold current, as shown
by the rectangles that indicate the standard deviations of
the four distributions. As the interaction distance lengthen,
the approximation of the capture probability 𝑓(𝑟𝑖𝑗) given in
the previous section may need to be improved to limit the
contribution of the longest transition, that are unlikely to
happen in amorphous materials. From these results, we claim
𝑟𝑐𝑢𝑡 a critical parameter in order to give predictive estimates
of a device behavior. At present, in the lack of any quantitative
information from first-principle transport calculations, its value
should be determined from the comparison of the simulated
results to an extensive experimental investigation.
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Fig. 2. Variability of the position of the switching point (𝑉𝑡ℎ, 𝐼𝑡ℎ) for the
test device of Fig. 1 as a function of the interaction distance 𝑟𝑐𝑢𝑡. The average
values of the threshold voltage and currents are indicated by the crosses and by
the arrows pointing to the axes. The dashed and the dotted rectangles enclose
points differing from the average value less than one or two 𝜎’s, respectively.

B. Preferential paths for conduction

Apart from the fluctuations described in previuos para-
graph, all of the 𝐼–𝑉 characteristics share the typical pattern
of the hot-carrier trap-limited conduction outlined by the
1D models. Specifically, we observe the presence of three
different conduction regimes (Ohmic, exponential, and super-
exponential) in the 𝐼–𝑉 characteristic up to the threshold
condition, and the negative-differential-resistance (NDR) con-
dition sets in after threshold. According to the models in the
literature, this behavior can be ascribed either to the presence
of hot carriers, or to the formation of preferential paths leading
to filamentary conduction. In particular, 1D models [12], [17]
can neither confirm nor invalidate the existence of prefer-
ential paths. On the other hand, filamentary conduction was
highlighted by other models using an electro-thermodynamical
approach [18], without detailing the transport mechanisms at
the nanoscale. The 3D-nHD model allows to track highly-
conductive paths related to carrier heating.
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Fig. 3. Top panel: Concentration of the current along preferential path as a
function of the prescribed current for the three sections indicated in Fig. 4. The
monotonically decreasing behavior indicates that the current is progressively
gathered by a single path per section (see text). Bottom panel: Specific energy
of the nodes along the preferential path, as a function of the 𝑧 coordinate.
Four currents, one per conduction regime, are reported. The energy of the two
contacts is prescribed at the equilibrium value 𝑒𝑒𝑞 = 0.

The microscopic details of the conduction mechanism
connected to the creation of a preferential path of hot car-
riers are shown in Fig. 3. To this aim, we use the function
𝑆(𝑧) = −∑

𝑖,𝑗 𝜃𝑖𝑗(𝑧) ln[𝜃𝑖𝑗(𝑧)], where 𝜃𝑖𝑗(𝑧) = 𝐼𝑖𝑗(𝑧)/𝐼 is
the fraction of the prescribed current 𝐼 flowing between pairs
of nodes 𝑖 and 𝑗 (with 𝑖 < 𝑗) placed at opposite sides of
a cross-section at a given 𝑧 coordinate [19]. Such a function
estimates the degree of disorder over a cross-section of the
network. In the top panel of Fig. 3 we report the values
calculated on three sections, two near the two contacts (A and
C) and one in the middle of the device (B). The high initial
values means that the current is almost evenly distributed over
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all paths crossing the section and the differences are basically
due to the different numbers of lines that must be counted
in the three cases. The progressive significant decrease of the
entropy for sections A and B indicates that the charge flux
concentrates along a particular path, gathering the majority of
the current. This behavior is present also for section C, though
less pronounced, since in this case a preferred path dominates
over its competitors even at low currents.

Fig. 4. 3D representation of the network and creation of the preferential
conductive path. The two images refer to a very low current (top) and to a
high current after threshold switching (bottom). The positions of sections A,
B, and C used in Fig. 3 are also shown.

The presence of hot carriers is revealed by analyzing the
specific energy 𝑒𝑖 of the nodes of the preferential path. In the
bottom panel of Fig. 3 we report the specific energy profile
as a function of the distance from the injecting contact at
𝑧 = 0 for four selected values of the current. In pre-switching
conditions, the imbalance between energy gain and relaxation
activates some nodes with a substantial increase in the specific
energy of the carriers sitting there. Since the transition rates
have a strong dependence on such an energy, this hot-carrier
effect triggers a positive feedback that reinforces the current
along the preferential path, and a low-resistance, contact-to-
contact route is eventually created. As a consequence, the
voltage dropped across the device is reduced when the current
is further increased. The microscopic configurations of the
network for a low current far from threshold and a high current
after threshold are also represented in the two ball-and-stick
plots of Fig. 4.

IV. CONCLUSION

A 3D extension of the hydrodynamic-like model for trap-
limited conduction in amorphous materials has been derived
and implemented within the framework of a non-linear resis-
tance network. The outcomes of the simulations fit nicely the
test case of PCM prototypes, and provide information about
the statistical variability of the threshold condition. A sound
microscopic interpretation based on preferential paths of hot
carriers is also provided. A future extension of the 3D-nHD
model will also take into account lattice heat transport and
crystallization effects.
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