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I. INTRODUCTION

Non-planar transistor channels used in tri-gate [1] or gate-
all-around (GAA) [2] device architectures offer superior elec-
trostatic control, which reduces short-channel effects. The
limiting factor in these devices is surface-roughness scattering
(SRS) as it is more pronounced in these devices than in planar
technologies, which has two reasons: one is that there are
more surfaces to scatter off and the other is that sidewall
roughness or line-edge-roughness (LER) are harder to control
in the fabrication process.

Being of such importance it is surprising to find that a
thorough perturbative treatment of SRS is missing in literature.
Most low-field mobility calculations for non-planar channels
employ phenomenological descriptions or extensions of SRS
models for planar structures. Commonly, tri-gate channels are
modeled as three separate non-interacting planar channels at
the top and each sidewall, and the scattering rate in GAA
channels is assumed to be proportional to d6, with d being
the diameter. The latter is based on an analysis of quantum
wells in Ref. [3].

The only work known to us that rigorously treats SRS for a
one-dimensional electron gas (1DEG) is Ref. [4]. The authors
calculate the electron mobilities of gated silicon nanowires
taking into account both axial and angular interaction of
electrons with the rough nanowire surface. The calculations,
however, rely on cylindrical symmetry of both real and k-
space; this means that first, the model cannot be extended to
non-cylindrical geometries, and second, that band anisotropy
is completely neglected. The authors approximate the effective
masses of 〈100〉-oriented nanowires as isotropic in the cross-
section, which is questionable in itself and fails to capture the
effect of channel orientation. Channel orientation is likely to
play an important role in SRS as experimental data from [5]
indicates.

This raises the following issues and questions:
• Rotational symmetry even of cylindrical GAA channels

is not likely to be valid and must be dropped.
• The d6-approximation is only valid in very narrow chan-

nels with very low electric fields in the cross-section.
• How to define a “diameter” for a tri-gate device, espe-

cially in the presence of electrostatic confinement?
• How can SRS theory for planar and cylindrical geome-

tries be extended to more general surfaces, that don’t even
need to be closed shapes?

In this work, we investigate the effect of band structure
anisotropy and channel orientation on SRS in non-planar chan-
nels such as tri-gate and GAA structures. A new formalism is
introduced for calculating SRS rates for non-planar structures.
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The formalism is an extension of the theory by Prange and
Nee [6] for planar structures, which has been widely used for
calculating the conductivity of inversion layers and thin films
[7]. We derive matrix elements for open and closed surfaces
of arbitrary shape taking anisotropy of the band structure fully
into account. Numerical experiments performed on tri-gate and
GAA cross-sections indicate that SRS is greatly influenced by
band anisotropy and channel orientation.

II. THEORY

We start by writing the ensemble average of the surface-
roughness-induced transition rate for a one-dimensional carrier
gas as

〈Sn,n′(k, k′)〉 = 2π

�
〈|Hn,n′;k,k′ |2〉δ(E(k)− E(k′)), (1)

from state n to n′ and from one-dimensional k-vector k to k′.
To evaluate the matrix element Hn,n′;k,k′ , we take a look at
the perturbing potential in Fig. 1. The position of an abrupt
potential step of height ΔV fluctuates as described by the
function Δ(r). The resulting perturbing potential is a narrow
barrier or well – depending in the sign ofΔ(r) – of height ΔV
and width Δ(r). We approximate the perturbing potential by a
weighted surface-delta-distribution ΔVΔ(r)δ(r ∈ S ), where
S represents the points of the ideal surface. This allows us
to convert the evaluation the matrix element Hn,n′;k,k′ from
a volume integration to a surface integration,

Hn,n′;k,k′ = ΔV

∫
S

ψ∗
n,k(r)ψn′,k′(r)Δ(r) dA. (2)

The matrix element (2) cannot be evaluated directly since
Δ(r) is a random function. Instead, Δ(r) is characterized by
its autocorrelation function c(r) = 〈Δ(r′)Δ(r′+r)〉 and its 2D
Fourier transform C(q), i.e. the roughness “power spectrum”.
We make no assumptions about the nature of c(r) of C(q) in
this work, but an exponential autocorrelation function c(r) =

Δ2
rmse

−√
2r/Λ is considered to represent the properties of a

rough surface/interface [8] correctly. In the frame of reference
of a propagating electron, surface roughness appears as an
ensemble of surface-bound phonons with zero frequency and
a momentum distribution according to C(q).
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Fig. 2. Sketch of a tri-gate channel’s rough surface denoted by S ; electron
states (ψn and ψn′ ) are confined in two dimensions within the fin and interact
along the curve C (dashed) formed by intersection of C with the cross-section
plane.

The ensemble average of the square magnitude of (2) can
be evaluated.〈|Hn,n′;k,k′ |2〉 =

∫∫
S

dAdA′ψn,k(r)ψn′,k′(r)∗

ψn,k(r
′)∗ψn′,k′(r′)ΔV 2

〈
Δ(r)Δ(r′)

〉
. (3)

So far we have made no assumptions about the electron
states ψn,k. The carriers form a one-dimensional gas and are
confined in two spatial dimensions as shown in Fig. 2. We
separate the electron states into a two-dimensional standing
wave in the cross-section and a plane wave along the channel
axis. Using this separation approach, we can rewrite (3) as

〈|Hn,n′;k,k′ |2〉 = 1

2πL2

∫∫
C

L∫∫
0

fn,n′;k,k′(s)f∗
n,n′;k,k′(s′)

ei(k−k′)(z−z′)〈Δ(r)Δ(r′)〉dzdz′dsds′. (4)
The integration across surface S was separated into integra-
tions along curve C , i.e. the intersection of S with the cross-
section plane, and a length L along the channel direction; s
denotes the path coordinate along the curve and z the axial
coordinate. We introduced the form functions fn,n′;k,k′(s)
which are defined as

fn,n′;k,k′(s) = ψ∗
n,kψn′,k′ΔV. (5)

The effect of different effective mass in the channel and the
surrounding medium (gate dielectric) can be included in the
form functions as

fn,n′;k,k′(s) = ψ∗
n,kψn′,k′(V− − V+)

−∇ψ∗
n,k;− ·m˜−1

− ·∇ψn′,k′;−
+∇ψ∗

n,k;+ ·m˜−1
+ ·∇ψn′,k′;+, (6)

where the subscripts + and − indicate either sides of the
interface. In case the cross-section wavefunctions ψn,k do not
penetrate into the surrounding medium, the expression in (6)
can be approximated by

fn,n′;k,k′(r) ≈ �
2

2
mbarrier(

n ·m˜−1
well ·∇ψ∗

n,k

) (
n ·m˜−1

well ·∇ψn′,k′
)

(7)
Looking back at (4), we recall that

〈
Δ(r)Δ(r′)

〉
=: c(r)

and represent the autocorrelation as inverse 2D Fourier trans-
form of the roughness power spectrum,

c(r) =
1

4π2

∫∫
R

C(q)eiq⊥(s−s′)eiq‖(z−z′)dq⊥dq‖, (8)

separating the roughness “wave vector” q into an axial com-
ponent q‖ and a component q⊥ along C . Inserting (8) into (4),
we arrive at

〈|Hn,n′;k,k′ |2〉 =
1

4π2L2

∫∫
C

dsds′
∫∫
R

dq⊥dq‖

L∫∫
0

dzdz′

fn,n′;k,k′(s)f∗
n,n′;k,k′(s′)C(q)eiq⊥(s−s′)ei(k−k′+q‖)(z−z′).

(9)

Axial integration of the plane wave term ei(k−k′+q‖)(z−z′)

leads to a 2πLδ(k − k′ + q‖) expression thus simplifying the
previous equation to〈|Hn,n′;k,k′ |2〉 =

1

2πL

∫∫
C

dsds′
∫
R

dq⊥

fn,n′;k,k′(s)f∗
n,n′;k,k′(s′)C(q)eiq⊥(s−s′). (10)

A change of variables s′ − s =: s′′ gives〈|Hn,n′;k,k′ |2〉 =
1

2πL

∫
R

C(q)dq⊥

∫
C

⎡
⎣∫

C

fn,n′;k,k′(s)f∗
n,n′;k,k′(s+ s′′)ds

⎤
⎦ eiq⊥s′′ds′. (11)

The term in square brackets represents an autocorrelation of
the form functions fn,n′;k,k′(s) and the integration around it
is a Fourier transform s �→ q⊥. Using the Wiener-Khinchin
theorem we can express the Fourier transform of the auto-
correlation of fn,n′;k,k′(s) as square magnitude of its Fourier
transform Fn,n′;k,k′(q⊥) obtaining the final expression for the
matrix element and transition rate,〈|Hn,n′;k,k′ |2〉 =

1

2πL

∫
R

|Fn,n′;k,k′(q⊥)|2C(q)dq⊥. (12)

Sn,n′(k, k′) =
1

�L

∫
R

|Fn,n′;k,k′(q⊥)|2C(q)dq⊥

δ(En′(k′)− En(k)) (13)

A few assumptions are contained within this last step of our
derivation:

• For closed curves C (GAA channel) the Fourier transform
is in fact a Fourier series expansion.

• For open curves C (tri-gate channel) the wavefunctions
are assumed to be square-integrable and so are the
form functions fn,n′;k,k′(s). If the electrons are confined
to the fin cross-section electrostatically, the value of
fn,n′;k,k′(s) will exponentially decay for s→ ±∞. This
allows to extend the integration over C to R.

• The roughness power spectrum is isotropic, C(q) =
C(q).

III. COMPUTATION

The wavefunctions ψ are obtained by solving the closed-
boundary Schrödinger equation in 2D in the parabolic band
approximation,

�
2

2
(∇ ·m˜−1 ·∇+ V )ψ = Eψ, (14)

with anisotropic effective mass tensor m˜ . The equation is
discretized on an unstructured triangular mesh using a method
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Fig. 3. Overall computational procedure; a self-consistent Schrödinger-
Poisson loop (SCL) is run. The subband energies and wavefunctions of the
converged solution are used to calculate scattering rates and mobilites. Single
arrows represent data flow, double arrows control flow.

reported earlier in [9]. The discretization ensures the correct
treatment of anisotropic bands and naturally includes the effect
of channel orientation. A self-consistent Schrödinger-Poisson
simulation is conducted to obtain the electron concentration in
the channel cross-section as well as the wavefunctions for each
valley and subband. The computed wavefunctions and energies
are used to compute the scattering rates between the subbands
which are then used to compute channel conductivities and
mobilities using the Kubo-Greenwood formula [10]. Fig. 3
outlines the computational procedure.

Since we are assuming parabolic bands an energy-dependent
scattering rate from subband n to subband n′ can be obtained
from (13) and the 1DEG density of states g1D,n′(E),

1

τn,n′(E)
=

1

2�

∫
R

|Fn,n′(q⊥)|2C(q)dq⊥ g1D,n′(E). (15)

An efficient procedure was devised to compute the spectral
form functions Fn,n′(q⊥) required for the integral in (15). The
procedure is depicted in Fig. 4. The wavefunctions are used to
compute the form functions along the interface curve C , which
are resampled onto an equidistant q⊥-grid and fast-Fourier-
transformed to obtain their spectral counterparts Fn,n′(q⊥).
Having found the spectral form functions Fn,n′(q⊥) the scat-
tering rate in (15) is obtained via q⊥-integration, visualized
in Fig. 5. The integral represents momentum conservation in
the cross-section plane. In a planar geometry with a two-
dimensional electron gas momentum conservation is charac-
terized by a δ(k − k′ + q) term. In a non-planar structure
cross-section momentum conservation is not sharply defined
and the δ(k−k′+q) term is replaced by the integral in (15).

In addition to the SRS rate, the electron-phonon scattering
rates were also computed. Common literature parameters for
phonon scattering in bulk silicon were used with the exception
of the acoustic deformation potential, which was set to 14.6 eV
due to the proximity of the Si/SiO2 interface. All rough
surfaces were assumed to have exponential autocorrelation
with Δrms = 0.48 nm and Λ = 1.3 nm [4].
All models were implemented as part of the Vienna

Schrödinger-Poisson quantum simulation framework [12].

IV. RESULTS

Using our model we investigated the properties of two sets
of devices. The first set consists of cylindrical GAA channels
of different diameters (3 nm to 14 nm) and orientations (〈100〉,
〈110〉, 〈111〉). For comparison, the 〈100〉-oriented channels

ψn

ψn′
s

C

fn,n′(s)

s

fn,n′(s)

q⊥

|Fn,n′(q⊥)|2

extract form
functions

unf
old

FFT

Fig. 4. Computational procedure to obtain the form functions fn,n′ (s)
and the spectral form functions Fn,n′ (q⊥): For each two cross-section
wavefunctions ψn and ψn′ the expression in (6) is evaluated along the
interface curve C on the mesh used for computing the states. The form
function fn,n′ (s) is interpolated onto an equidistant s-grid and padded with
zeros if C is open. The spectral form function Fn,n′ (q⊥) is computed using
the fast Fourier transform (FFT) [11].

k‖

En, En′

q⊥

|Fn,n′(q⊥)|2,
C(

√
q2‖+q2⊥)

q‖

q‖ = k′‖ − k‖

∫
dq⊥

Fig. 5. Calculation of the scattering rate from subband n to subband n′ from
(15); for each energy value the difference of axial k-vectors is evaluated which
represents the axial momentum transfer q‖. The roughness power spectrum
C(q) is offset using

√
q2‖+q2⊥ and its product with the spectral form function

Fn,n′ (q⊥) integrated.

were also simulated with isotropic cross-section mass miso =
2mlmt/(ml+mt) [4]. All channels were covered by 1 nm of
SiO2 as well as a metal gate. Fig. 6 shows the self-consistent
carrier concentration for the 〈100〉 and 〈110〉 channels at 1V
gate bias. Except for ultra-thin channels of 4 nm and below the
carrier distribution is clearly anisotropic and one may expect
strong deviation from the isotropic approximation also in the
channel mobilities. This is in fact the case as seen in Fig. 7.
The deviation is especially strong for thicknesses around 5 nm
when gate bias is applied. This is the transition region between
bulk and layer inversion where a 2D quantum picture of the
channel cross-section is necessary.

The second set of devices was constructed to match
the cross-section of Intel’s 22 nm node tri-gate transistors
[1]. Different combinations of channel/substrate orientation
([100]/(010), [110]/(001), [110]/(11̄0), [110]/(11̄1)) were eval-
uated. Fig. 8 shows the self-consistent electron concentration
for the [110]/(001) orientation. The electrons interact with an
Si/SiO2 curved interface comprised of a distribution of surface
orientations, which is different for every channel/substrate ori-
entation. This results in heavily orientation-dependent channel
conductivity (Fig. 9).
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Fig. 7. Thickness-dependent mobilities for cylindrical GAA channels; left: 〈100〉 orientation unbiased; middle: 1V gate bias, � – anisotropic bands, • –
isotropic approximation; the isotropic approximation deviates strongly from the anisotropic results; right: comparison of 〈100〉, 〈110〉, and 〈111〉 channels;
solid lines – unbiased, dashed lines – 1V gate bias
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Fig. 6. Self-consistent electron concentration in GAA channels at 1V gate
bias; the top row shows concentrations for 〈100〉 the bottom row for 〈110〉
channels. The channel diameter is varied from 4 nm (leftmost) to 14 nm
(rightmost) in 2 nm steps. Rotational symmetry is absent in the electron
concentration; electrons distribute non-uniformly with respect to azimuthal
angle due to band anisotropy.

Fig. 8. Left: TEM image of a tri-gate channel cross-section fabricated by
Intel [1]; segments of the computational domain are shown in color [13].
Right: Computed self-consistent electron concentration for a [110]/(001)
channel/substrate orientation. The computational grid is visible as well.
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Fig. 9. Channel conductivity vs. gate voltage for the device shown in
Fig. 8; Different channel/substrate orientations show different behavior due
to orientation-dependence of SRS.

V. CONCLUSION

We developed a new generic method for evaluating the
surface-roughness-induced scattering rate in non-planar semi-
conductor structures. The method accurately captures band
anisotropy and the roughness-induced momentum transfer be-
tween the confined states. Strong dependence of SRS-limited
electron mobility on crystal orientation was observed with
〈100〉 and [110]/(11̄0) being the optimal orientations.
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