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Abstract—This paper presents a self-consistent coupled

DD/MSBTE solver for the device simulation of realistic 3D

multi-gate transistors. The MSBTE for quasi-1D k-space

is solved in the channel region while the DD equation

is solved in the source/drain regions with an appropriate

boundary condition at the DD/MSBTE region interfaces.

In the MSBTE region, 2D Schrödinger equation with the

two (electrons) or six (holes) band k · p Hamiltonian is

solved to obtain the subband structure for arbitrary crystal

orientations and stress conditions. Phonon and surface

roughness scattering processes are taken into account

in the MSBTE where the surface roughness scattering

model has been extended to consider arbitrary cross-

sections. Silicon nanowire transistors are considered as an

application.

I. INTRODUCTION

For logic applications, 3D multi-gate transistors are
being introduced into production due to their superior
gate controllability. As the cross-sections perpendicular
to the channel direction of the multi-gate transistors
are typically uniform, subbands can be defined along
the channel direction and semi-classical carrier transport
in the subbands can be described by the MSBTE [1].
In realistic multi-gate transistors, however, the device
cross-sections of the source/drain regions are quite dif-
ferent from the channel region, and the MSBTE cannot
be applied to the entire simulation domain including
the source, channel, and drain regions. To avoid this
problem, this paper presents a self-consistent coupled
DD/MSBTE solver for the device simulation of realistic
3D multi-gate transistors.

II. BOUNDARY CONDITIONS

In this work, the MSBTE for quasi-1D k-space [1] is
solved in the channel region while the DD equation is
solved in the source/drain regions. In order to provide a
boundary condition for the MSBTE at the DD/MSBTE
region interfaces, the quasi-Fermi potential computed
from the DD equation (ΦDD) is averaged at the interface
cross-section (∂Ω) with the carrier density obtained from

the DD equation (nDD) as a weighting factor:

Φavg =

∫
∂ΩΦDD (r)nDD (r) dr∫

∂Ω nDD (r) dr
(1)

Then, the Fermi-Dirac distribution function with the
computed quasi-Fermi potential Φavg is injected into
the MSBTE region. On the other hand, the carrier
flux computed from the MSBTE (FBTE [ s−1]) enters
as a boundary condition of the DD equation. Again,
the carrier density from the DD equation is used as
a weighting factor to compute the local flux density
[ cm−2s−1] from the flux across the whole cross-section:

FDD (r) · n (r) |∂Ω = FBTE (z)
nDD (r)∫

∂Ω nDD (r′) dr′
(2)

where n is the interface normal vector.
As a result, the local carrier density is not necessarily

continuous at the DD/MSBTE interface. The Poisson
equation is solved in the entire DD/MSBTE regions to
obtain self-consistent solutions.

III. SUBBAND AND QUANTIZATION MODELS

In the MSBTE region, 2D Schrödinger equation is
solved by using the finite element method at multiple
device cross-sections along the channel direction to
obtain the subband structure in the 1D k-space. As for
the Hamiltonian of the 2D Schrödinger equation, an
ellipsoidal band model (with effective masses and band-
offsets computed from the two-band k · p model [2])
for electrons and six-band k ·p model for holes [3], [4]
are employed to handle arbitrary crystal orientations and
stress conditions. More details of our 2D Schrödinger
equation solver can be found in [5].

In the DD region, the density-gradient equation [6] is
solved to take into account the quantization effects.

IV. SCATTERING MODELS

As for the scattering operators, phonon and surface
roughness scattering processes are considered. For the
phonon scattering, conventional acoustic and optical
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phonon scattering models similar to [1], [7] are consid-
ered. For holes, wavevector-dependent form factors are
employed based on the initial k value as proposed in [8].

Particular attention is given to the surface roughness
scattering model as we need to handle arbitrary 2D cross-
sections. In addition, it is important to ensure that the
calculated mobility converges to the value computed
from the 2D k-space mobility calculation in the 1D
quantization limits. To calculate the surface roughness
scattering rate, we introduce the circumference coordi-
nate s, the interface normal vector n, and the roughness
profile Δs,z as shown in Fig. 1. Then, the matrix element
of the surface roughness scattering is modeled as:

〈∣∣V SR
qz;μμ′

∣∣2〉 = nc∑
n=−nc

∣∣∣Γμμ′qs= 2πn

C

∣∣∣2 〈∣∣∣Δqs=
2πn

C
,qz

∣∣∣2〉 (3)

〈|Δqs,qz |2〉 =
πΔ2Λ2

LC

[
1 +

Λ2

2

(
q2s + q2z

)]−3/2

(4)

Γμμ′qs =

∮
C
ds

bmax∑
i=1

bmax∑
j=1

Γ
(ij)
μμ′ (s) eiqss (5)

Γ
(ij)
μμ′ (s) =

Δori

Δ

(
∇Ψ(i)∗

μ · n
)
H(ij)

nn

(
∇Ψ

(j)
μ′ · n

)
(6)

H(ij)
nn =

y∑
α=x

y∑
β=x

M
(ij)
αβ nαnβ (7)

where μ and μ′ represent the subband indices, qz = k−k′
is the 1D momentum transfer, C is the circumference of
the interface, Δ is the reference rms value of roughness,
Λ is the correlation length (1.2 nm for electrons, 4 nm
for holes), nc ≈ 2C/ (πΛ), bmax is the number of bands
(1 for electrons, 6 for holes), Δori (s) is the surface-
orientation-dependent rms value of roughness, Ψi

μ is the
wavefunction for k = 0, nα is the α-component of n,
M

(ij)
αβ is the coefficient of the bulk Hamiltonian as:

H
(ij)
bulk = M

(ij)
0 +

z∑
α=x

z∑
β=x

M
(ij)
αβ kαkβ (8)

Equation (3) takes into account the Prange-Nee contribu-
tion [7] for an arbitrary 2D cross-section. For electrons,
we employ Δ100 = 0.4 nm and Δ110 = 0.52 nm.
For holes, Δ = 0.25 nm is used independent of surface
orientations. As shown in (4), the exponential rather than
the Gaussian power spectrum density is employed in
this work. Please note that the hole mobility limited
by surface-roughness scattering can diverge when the
Gaussian power spectrum density is used.

Fig. 1. Definition of circumference coordinate s, interface normal
vector n, and the surface roughness Δs,z .

V. SIMULATION RESULTS

To check the validity of the implemented 2D
Schrödinger solver in the 1D quantization limit, we first
compare our results with a well-established mobility
calculator Sentaurus Band [8] which computes low-field
mobility based on the solution of the 1D Schrödinger
equation. Fig. 2 shows the computed electron and
hole mobilities at double-gate-like rectangular nanowire
cross-sections with WSi = 4 nm and HSi = 20 nm
for different surface orientations and stress conditions.
While the (001) [(11̄0)] surface exhibits higher electron
(hole) mobility for the relaxed silicon, the electron (hole)
mobility enhancement due to uniaxial stress is larger for
the (11̄0) [(001)] surface orientation. In addition, the
computed mobility curves agree reasonably well with
the results from Sentaurus Band [8] which assumes
HSi →∞.

In Fig. 3, the electron and hole density profiles at the
cross-section for the strong inversion bias condition are
shown. We also compare the carrier density at the center
of the cross-section with that from Sentaurus Band in
Fig. 3 (c) and (d). We obtain excellent agreement for the
electron density profile. For the hole density calculation,
we use the wavevector at k = 0 and neglect the k-
dependence of the wavefunction, which may cause some
differences between the two simulators especially for the
case of (11̄0) surface at 0 GP.
Near the top and bottom corners, there exist non-

negligible 2D quantization effects especially for the
(11̄0) side wall nFET and the (001) side wall pFET
since the quantization along the side wall is strong (in
other words, the quantization mass is small). As a result,
carriers are squeezed to the corners. For these surface
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Fig. 2. Calculated electron [(a) phonon-limited, (b) SR-limited,
(c) phonon+SR] and hole [(d) phonon-limited, (e) SR-limited,
(f) phonon+SR] mobility for double-gate-like rectangular nanowire
cross-section (WSi = 4 nm, HSi = 20 nm) for different side wall
surface orientations [(001) and (11̄0)] and stress conditions (0 and
±3 GP unaxial stress along 〈110〉 channel direction). The symbols
are obtained from the 2D k-space mobility calculator Sentaurus
Band [8] assuming HSi → ∞. For fair comparison between the
2D and 1D quantization-based simulators, the average (rather than
the effective) electric field is employed in the x-axis. In addition,
consistent band-structure and scattering parameters are employed in
the two simulators.

orientations, the differences in the mobility curves ob-
tained from the two simulators are also large (see Fig. 2).
Therefore, the remaining differences in the mobility
curves may be caused by the 2D quantization effects.
Indeed, we have checked that the differences in the
mobility curves are reduced when HSi is increased (not
shown).
Fig. 4 (a) shows the structure of a circular nanowire

transistor considered here. The simulation domain is
divided into three (source, channel, and drain) sub-
regions, and the DD equation (coupled with the density-
gradient equation) is solved in the source/drain regions
while the MSBTE is solved in the channel region. The
Poisson equation is solved in the entire domain to obtain
self-consistent solutions. In Figs. 4 (b)–(d), the electron
density at VD = VG = 0.8 V is shown. As mentioned
before, the local electron density is discontinuous at
the DD/MSBTE region interface although the difference
in the integrated density is only about 3%. As the
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Fig. 3. 2D (a) electron and (b) hole density at the cross-section
of the double-gate-like rectangular nanowire at the largest gate bias,
and the corresponding 1D (c) electron and (d) hole density at y = 0.
The symbols are obtained from the Sentaurus Band. The differences
in hole density for the [11̄0] orientation are due to the use of k =
0 wavefunction for the hole density calculation. The k-dependence
is taken into account in the form factor calculation for the phonon
scattering.

quantization along the side walls [(11̄0) orientation]
is stronger than that along the top and bottom [(001)
orientation], the electron density profile in Figs. 4 (c)
and (d) are anisotropic.

Fig. 5 shows the ID-VG curves of the n and p-type
nanowire transistors without stress and with ±3 GP
uniaxial stress. The applied uniaxial stress induces sig-
nificant VT shift because of the stress-induced bandstruc-
ture changes. For the given VG− VT, the uniaxial stress
enhances both the linear and saturation currents where
the enhancement of the linear current is slightly larger.
The internal electron and hole density distributions

as a function of position and energy in the MSBTE
region can be found in Fig. 6, which clearly shows quasi-
ballistic carrier transport in the channel.
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Fig. 4. (a) Doping profile and structure of a circular nanowire
transistor considered in this work (DSi = 5 nm, LG = 10 nm), (b)
electron density profile at VD = VG = 0.8 V, (c) electron density
computed from the DD equation, and (d) that from the MSBTE at
the DD/MSBTE interface cross-section.
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Fig. 5. ID-VG curves of the n and p-type nanowire transistor without
stress and with ±3 GP uniaxial stress.

Fig. 6. (a) Electron and (b) hole density distribution as a function
of position and energy when VD = VG = ±0.8 V.

VI. CONCLUSION

It has been shown that the implemented coupled
DD/MSBTE solver is a practical tool to study the influ-
ence of 2D quantization, quasi-ballistic carrier transport,
mechanical stress, orientation, and scattering in realistic
3D multi-gate transistors with arbitrary cross-sections
and realistic source/drain regions. We have also validated
that the implemented 2D Schrödinger solver and the
proposed surface roughness scattering model provide
consistent results in the 1D quantization limit.
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