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Abstract—The band structure and transport of an armchair and 
the zigzag graphene nanoribbon (GNR) are calculated using 
different types of Hamiltonians, including density functional-based 
tight binding (DFTB), extended Hückel theory (EHT), tight 
binding (TB), and density functional theory (DFT). Only the pz 
orbit is used for the carbon atom in the TB Hamiltonian (pz-TB). 
The other four orbits are used for the carbon atoms in the DFTB 
and EHT Hamiltonians. The transport calculation is performed 
using non-equilibrium Green’s function (NEGF). The results show 
that all Hamiltonians have consistent band structures and I-V 
characteristics. Although pz-TB has low accuracy in describing the 
defects on GNR, it can still provide qualitatively correct band 
structures and I-V curves. 
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I. INTRODUCTION  

Various Hamiltonians are used in band structure and 
quantum transport calculations to evaluate carbon-based device 
performance. Density functional theory (DFT) calculation [1][2] 
is considered as the most fundamental and accurate method 
among the Hamiltonians. However, due to its huge 
computational cost, it is usually applied in small system. Density 
functional-based tight binding (DFTB) [3] and extended Hückel 
theory (EHT) [4] Hamiltonians are two candidates for larger 
systems with the disadvantage of accuracy loss. The pz orbit is 
used for the carbon atom in the TB Hamiltonian (pz-TB) is 
widely used in transport calculations because of its lower 
computational cost compared with the other three methods. DFT 
calculations [5] have recently shown that asymmetric zigzag 
grapheme nanoribbon (ZGNR) exhibits conventional metallic 
conductance under bias, whereas symmetric ZGNR exhibits 
semiconductor-like conductance (called the odd-even effect in 
this study). The reason for this is that the transmission through 
the system depends on whether π electrons can hop to the π∗ 
state or not (π and π∗ refer to the two bands near the Fermi level 
in the E-k diagram). For the symmetric ZGNR, the hopping 
integral is zero because of σ parity limitation, whereas such 

constraint is not observed for the asymmetric ZGNR. In 
graphene antidote lattices (GALs), electronic localized states 
have been demonstrated [6] to be equal to |nα - nβ| (nα and nβ 
are the number of removed α and β type atoms in GALs) of the 
supercell. Whether EHT, DFTB and pz-TB can reproduce such 
effects remains unclear. Although a number of studies on band 
structure calculations have been conducted using various types of 
Hamiltonians, only few studies have compared their transport 
properties. In this study, the band structures of GNR and the 
transport properties of a two-terminal GNR device are calculated 
to test the consistency of DFT, DFTB, EHT, and pz-TB.  

II.  METHODOLOGY 

Following the standard convention [6], as shown in Fig. 1(a), 
the width of the armchair GNR (AGNR) is defined as the number 

                

 
(a) 

 
                               (b) 
Fig. 1 (a) Symbolic definition of the parameters of AGNR and ZGNRs. The 
black balls represent the unit cells and a and z represent the unit cell width 
of AGNR and ZGNR, respectively. (b) Two-terminal GNR-based device 
structure. Atoms in the cuboid are electrodes. 
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of dimer lines along the vertical direction (Na) and the width of 
the ZGNR is defined as the number of zigzag chains along the 
horizontal direction (Nz). AGNR (ZGNR) with width Na (Nz) is 
labeled as Na-AGNR (Nz-ZGNR). 

The Atomistix ToolKit (ATK) was used to perform GNR 
device band structure and transport calculations by using DFT 
Hamiltonian. Coding was performed to implement device 
simulation by using pz-TB, DFTB, and EHT combined with 
NEGF. Fig. 1(b) shows the schematic diagram of the simulated 

structure. After DFT geometry relaxation, the distances of C-C 
and C-H were 1.422 and 1.101 Å, respectively, which were 
consistent with the results of previous calculations [7].  The 
edge carbon distance is relaxed at 3.5% (the hopping integral 
increased by 12%) to describe GNR edge relaxation in the pz-TB 
model [7]. The Hamiltonian constructions  of EHT and DFTB 
consisted  of four orbits for the carbon atom and a single orbit 
for the hydrogen atom. On the other hand, in the pz-TB 
Hamiltonian, only the pz orbit was used for the carbon atom and 
the orbit of the hydrogen atom was ignored. The parameters of 
the DFTB and EHT Hamiltonians were obtained from refs. [8] 
and [9], respectively. The hopping integral between C-C in pz-TB 

model was 2.7 eV. The NEGF implementation followed the 
standard procedure [11] to be solved with Poisson’s equation 
self-consistently. Fig. 7 shows the flowchart and Table 3 lists the 
main equations that were used within the NEGF formulism. 

In addition to the perfect AGNR, three configurations of 
AGNR with vacancy defects were used in the band structure and 
transport calculations. As can be seen in Figs. 2(a)–2(c), Va , Vaa , 
and Vab  were used to denote the removal of one C atom, two 
identical type C atoms, and two different types of C atoms, 
respectively. All the configurations were optimized using ATK 
with force tolerance of 0.05 eV/Å. According to Ref. [6], the 
number of defects level for Va , Vaa , and Vab  should be 1, 2 
and 0, respectively, as shown in Figs. 2(d)–2(f). 

III.  RESULTS AND DISCUSSIONS 

Fig. 5 shows four bands near the Fermi level and I-V curves 
of 7-, 8-, and 9-AGNR. Fig. 3 shows the band structures and I-V 
curves of 7- and 8-ZGNR. The results show that the four 
Hamiltonians can provide similar band structures and 
comparative I-V curves. The results can be verified by the fact 
that the bias where the current rises is nearly equal to the energy 
band gap of the corresponding configuration, matching the 
proposed manifestation. The odd-even effect can be reproduced 
using pz-TB, as shown in Fig. 4. This result is consistent with 
the first principle calculation [5]. DFTB and EHT also possess 
the odd-even effect (the results are not shown here).  

       
(a)                         (d) 

       
(b)                         (e) 

       
(c)                         (f)   

Fig. 2 Schematics diagram of the simulated structure with different vacancy 
configurations. The grey and white balls represent carbon and hydrogen atoms, 
respectively. (a), (b), and (c) represent the configurations of Va , Vaa , and Vab , 
respectively. (d), (e), and (f) schematically show the corresponding band 
structures.  
 

 
(a)                              (c) 

 
(b)                              (d) 

Fig. 3 Comparisons of the electronic and transport properties of ZGNR by using 
four Hamiltonians. (a) and (b) represent the band structure of 7-ZGNR and 
8-ZGNR, respectively. (c) and (d) represent the corresponding I-V curves. 
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In this study, the band structure of GNR with vacancy 
defects and the transport properties of related GNR devices were 
investigated to further verify the consistency of the four 
Hamiltonians. Figs. 6(a)–6(d) show the band structures with 
different defects configurations by using four kinds of 
Hamiltonians. The defects in energy levels for all the 

Hamiltonians were consistent with the rule mentioned in Ref. 
[6]. Figs. 6(e)–6(h) provide the corresponding I-V curves. The 
results show that the current does not simply increase or 
decrease with increasing vacancy number, but is rather closely 
related to the type and number of removed C atoms. Tables 1 
and 2 summarize the energy band gap and current for different 
defect configurations by using four Hamiltonians. The 
discrepancies among the currents of DFT, DFTB, and EHT 
Hamiltonians can be attributed to the energy band gap 

 
Fig. 4 Demonstration of the odd-even effect by using pz-TB. 

 

 
(a)                                (d) 

 
(b)                                (e) 

 
(c)                                (f) 

     
Fig. 5 Comparisons of the electronic and transport properties of AGNRs by using 
four Hamiltonians. (a)–(c) are band structure of 7-AGNR, 8-AGNR and 9-AGNR, 
respectively. (d)–(f) are corresponding I-V curves. 

 
(a)                                (b) 

                        
(b)                                (d) 

 
                (e)                                 (f) 

 
                (g)                                 (h) 
 
Fig. 6 Comparisons of the electronic and transport properties of 6-AGNR with defects by 
using four Hamiltonians. (a)–(d) are the band structures of perfect, Vaa , Va , and Vab , 
respectively. (e)–(h) are the corresponding I-V curves. 
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Table 1 Comparisons energy band gaps for different vacancy configurations using 
four kinds of Hamiltonians. Unit is eV. 
 

Hamiltonian Perfect Va  Vaa  Vab  

DFT 0.98 1.23 1.29 0.78 

DFTB 1.13 1.32 1.39 1.06 

EHT 1.25 1.47 1.56 1.18 

pz-TB 1.12 1.50 1.58 1.04 

 
Table 2 Comparisons of the electric currents of different vacancy configurations by 

using four kinds of Hamiltonians. The currents (units in μA) are measured at a bias of 
2.4 V. 

 
Hamiltonian Perfect Va  Vaa  Vab  

DFT 60.0 36.1 31.0 56.2 
DFTB 46.8 26.6 20.0 36.1 
EHT 38.9 19.9 11.5 27.1 

pz-TB 32.9 17.9 15.0 28.1 
 

difference, where the smaller energy band gap usually leads to a 
larger current. However, such result is not true for pz-TB, such 
as in the Vaa  configuration. Suppose that the use of the pz orbit 
alone may be insufficiently accurate to describe defect 
configurations. The hopping integral within the pz-TB model 
can be estimated to change around the vacancy spot because of 
the relaxation that accounts for the variation in chemical 
environment compared to the perfect lattice. The calculated 
2.7 eV parameter within the pz-TB model cannot precisely 
describe the situation under this circumstance. However, the 
results of band structure and transport properties are 
qualitatively correct, and thus, pz-TB can still be useful for GNR 
device simulation.  

IV.  CONCLUSION 

Four kinds of Hamiltonians, including DFTB, pz-TB, EHT, 
and DFT were used to calculate the band structure and transport 
properties of GNR devices. The DFTB, pz-TB, and EHT models 
were shown capable of revealing physics in refs. [5] and [6] 
with less computational burden compared with the DFT model. 
The results of the four Hamiltonians were consistent for perfect 
GNR. For the GNR with vacancy defects, pz-TB exhibited lower 
accuracy than the other three Hamiltonians, but it was able to 
provide qualitatively correct band structure and transport 
properties with the lowest computational cost. Moreover, the 
impact of vacancies in GNR device was proposed to be closely 
related to the type of the atoms removed. 
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Table 3 Main equations used in NEGF calculations. Subscript S and D stand for the 
source and drain respectively within simulation region. Eq. 1 is used to calculate the 
broadening matrixes due to source and drain. ∑ is the self-energy matrix. Eq. 2 is 
the equation for Green’s function. I is identity matrix and H is Hamiltonian of the 
device. Eq. 3 is used to calculate the spectrum function and Eq. 4 is for the 
correlation function whose diagonal elements are the local electron density. f is 
Fermi-Dirac function. Eq. 5 is the net current through the simulated device.  

 
 

Fig. 7 Flow chart for the NEGF and Poisson’s Equation self-consistent calculation. 
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