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Abstract. The cooperative electron-electron interaction is
one of the mechanisms for the occurrence of trap-to-band
transitions in chalcogenide memories. Here its analysis is
tackled by considering the presence of several trap levels, this
removing the limitations of earlier approaches. Also, the action
of two feed-back mechanisms is demonstrated. The results
show that the detrapping probability increases with the current
density, this supporting the interpretation by which successive
electron-electron scattering events may play a major role in
determining the snap-back of theI(V ) characteristic in this
kind of materials.

I. I NTRODUCTION

Some of the amorphous chalcogenide materials exhibit a
transition from a highly resistive to a conductive state, charac-
terized by a voltage snap-back. Thanks to this feature they are
used in the fabrication of nonvolatile memories [1]. Carrier
transport in chalcogenides is modeled by considering two
contributions: electron hopping via localized states (traps), and
motion of electron in extended states (i.e., band electrons).
The snap-back event is related to the sharp energy dependence
of the extraction mechanism responsible for the trap-to-band
transition of the trapped electrons [2]. This transition can be
started by different phenomena, such as impact ionization or
field-induced emission. While the former is not sufficiently
frequent at the operating condition of the device near thresh-
old, the second one cannot always provide a positive self-
sustained feedback mechanism, as required for the negative-
differential resistance to occur. A third detrapping mechanism
is is ascribed to the cooperative effect of band electrons over
trapped electrons [3], [4]. This mechanism is similar to impact
ionization, but involves only low-energy band electrons. It
seems a promising candidate to explain the feed-back effect.
Macroscopic models describing the generation process in-
duced by the Coulomb interaction of a trapped electron
with band electrons make use of a generation rate. To de-
rive the latter from first principles we used a numerical
approach [3], exploiting a solver of the two-electron, time-
dependent Schrödinger equation. Basing on this approach
one evaluates the detrapping probability as a function of the
current density in terms of the number of band electrons at a
given initial energy. While in [2], [4] a single trap level was
considered (the ground state), here the analysis is generalized

to the case of several levels. The restriction of assuming
that the band electrons have the same energy is removed as
well. The analysis confirms the dependence of the snap-back
phenomenon on the driving current. It also shows that the
feed-back process is actually made of the combination of two
mechanisms.
Letting fk be the filling fraction of thekth level Ek of a
trap, in the equilibrium condition the Fermi statistics forfk

holds, which keeps the majority of traps filled and makes the
population of the band and of the upper trap levels negligible.
An external perturbation (typically produced by a current
generator) results in an increase in the band population. The
electron concentrationn of the band is described through
a modified Fermi statistics in which the Fermi levelEF is
replaced with the quasi-Fermi levelEn. This is equivalent to
shifting the statistics along the energy axis. This description
is acceptable because in the typical operating conditions the
band electrons do not become significantly hot [2]. The higher
number of band electrons increases the probability of the trap-
to-band transitions per unit time due to the cooperative effect.
Such a probability is the largest for the highest trap level (EM

in figure 1) because the transition energyEC − EM (with
EC the bottom of the band) is the smallest. However, as the
population ofEM is initially negligible, so is the number of
electrons that are promoted to the band. On the other hand
the cooperative effect induces transitions among all pairs of
trap levels; such transitions, in turn, tend to equalize the level
populations, including that ofEM . The increased population of
EM provides a larger supply of electrons that can be promoted
to the band, this providing one of the two contributions to
the feed-back mechanism. Finally, the larger concentration
of band electrons makes the cooperative effect stronger, this
providing the other contribution to feed-back. As more current
is injected into the device,n keeps increasing at the expense
of the population of the trap levels. The two contributions to
feed-back are investigated in the next sections.

II. T RANSITION PROBABILITIES

The Es ↔ Ek transition probabilities per unit time be-
tween the levels of indicess, k combine the effects of the
phonon stimulated-emission/absorption and electron interac-
tions, Ṗks = Ṗsk = ṖP

sk + ṖE
sk. These terms do not include

the spontaneous emissions, which are treated separately. For
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ṖE
sk we adopt the same approach as that used in [5], [6], [7] to

model the degradation phenomena related to interface traps;
namely, indicating withγ the density of states per unit volume
of the band, withf the filling fraction of the band states, with
u = u(Ee) the angular average of the group velocity of the
band electrons, and letting∆sk = |Es − Ek|, one has

ṖE
sk =

∫
∞

∆sk

γ u σ f dEe . (1)

In the above,

σ = σ0

(
Ee − ∆sk

E0

)r

, Ee ≥ ∆sk , r > 0 , (2)

is the Keldysh-like cross section of the interaction between
the trap electron belonging to levelEk and the band electrons,
while Ee is the band-electron energy relative to the minimum
EC of the band andE0 a constant. The discussion focuses on
the integrand of (1), where all factors are non negative. The
energy dependence of the productγu, albeit complicated, is
fixed by the lattice structure; the cross sectionσ is a sharply
increasing function of energy because the exponentr is large.
In fact, in the problem of [5] the valuer = 11 is used; in
the fully quantum-mechanical approach of [4], a power of
the order of a few tens enters the probability that an electron
leaves the trap due to multiple scattering with band electrons.
For a power law of the type of (1), withr ∼ 10, the sharp
increase ofσ starts at the threshold energy∆sk + E0. As
the filling fractionf has an exponentially-decreasing tail, the
productσf is expected to have a peak, whose value depends
on the position of the tail along the energy axis. As discussed
in the introduction, such a position shifts when the device is
driven into a non-equilibrium condition by the application of
an external current.
The productσf is shown in figure 2; as expected, the curves
exhibit a peak, whose value turns out to depend strongly on
the shift of the quasi-Fermi levelEn. In the figure, the shift in
the Fermi distributions is obtained by changingηn = (En −

EC−∆sk)/(kBTL) by one unit (kB is the Boltzmann constant,
TL the lattice temperature). In contrast, the dependence of the
peaks’ position onηn is much weaker: solvingr exp(ηn−η) =
η − r for η with r = 11 shows that a change∆ηn = 2 moves
the peak by∆η ≃ 0.02; in the more realistic caser = 15 one
needs∆ηn ≃ 5.5 to obtain the same∆η. As a consequence,
the integration domain in (1) is not changed appreciably by the
shift of En. This is important for the purpose of the present
discussion, because in the calculation of the integral one leaves
the structural factorγu unchanged whenEn changes. As a
consequence, the changes inσf are not masked by the local
features ofγu, and the exponential-like dependence ofσf on
En is inherited by the integral.
It is worth mentioning that the analysis of [6] provides a dif-
ferent model for the cross section, namely,σ is approximated
by a step function{

σ = 0 , Ee < ∆sk

σ = σ0 , Ee > ∆sk
(3)

whose two branches are connected by an exponential. How-
ever, the outcome of the analysis is similar, and yields an

approximation toṖE
sk in the form

ṖE
sk =

∫
∞

∆sk

γ u σ f dEe ≃
σ0

q
Jn(∆sk) , (4)

with q = 1.602×10−19 C the electron charge, andJn(∆sk) ≥
0 the current density due to the band electrons having a kinetic
energyEe > ∆sk + E0 (Keldish-like cross section) orEe >

∆sk (step-function cross section).

III. B AND POPULATION

The derivation of the balance equations for the energy levels
is formally the same as, e.g., in laser theory. All traps are
equal to each other and provide a set ofM energy levels
E1 < E2 < . . . < EM . The trap concentration isN , while
Nk = Nfk is the concentration of traps whoseEk level is
filled. The time variation ofNk due to theEi ↔ Ek transitions
is Rik = Ṗik (Ni − Nk) − Nk (1 − fi)/τki, with 1 < k <

M , Ei < Ek, and τki the lifetime of spontaneous phonon
emission. The expression for theEk < Ei case is found by
exchangingi with k.
The exchange rate betweenEk and the band has a slightly
different form because empty band states are always avail-
able. It readsRkB = (ṖP

kB + ṖE
kB)Nk − αBknN(1 − fk),

where ṖP
kB , ṖE

kB are the trap-to-band emission coefficients
for the phonon and electron interactions, andαBk the band-to-
trap transition coefficient including the effect of spontaneous
phonon emission. An Auger-like term is not included in
the above expression; this approximation does not violate
the microscopic-balance condition because (4) vanishes at
equilibrium. In this case fromRkB = 0 one finds

[ṖP
kB fk]eq = [αBkn(1 − fk)]eq , (5)

with f
eq
k the Fermi statistics. It follows

[
ṖP

kB/αBk

]eq

= neq d exp

(
Ek − EF

kBTL

)
, (6)

whered is the degeneracy coefficient.
The form of the exchange rates simplifies considerably if one
assumes that the transitions occurring between neighboring
levels are dominant. This is justified by the observation that
in this case the energy required to induce the transition is
minimum. If, in addition, the electron-interaction perturbation
is large enough to makėP E

rs dominant with respect to the
phonon-related coefficientṡPP

rs and1/τsr, expressions similar
to (2a,b,c) of [5] are reached. It follows that in steady state
the level populationsNk equalize,N1 = . . . = NM , as is
ascertained easily starting from the balance equation for the
ground levelE1 and continuing with those forE2, E3, . . ..
Finally, a spatially-uniform case is considered. Due to the form
of the balance equation for levelEM , the equalization makes
the exchange rateRMB to vanish. From this, the expression
of the common value of the populations is found to be

N1 = . . . = NM =
nN

n + bM

, bM =
ṖP

MB + ṖE
MB

αBM

. (7)

In the spatially-uniform case the charge density

̺ = q(N − n −
∑

k

Nk) (8)
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vanishes; still considering the situation whereṖE
rs is dominant,

the vanishing of̺ coupled with the equalization of the level
populations yields

N − n − M
nN

n + bM

= 0 . (9)

Then, lettingν = bM +(M − 1)N , the band concentration is
found to be

n =
√

ν2/4 + NbM − ν/2 . (10)

Note that (10) holds only above the threshold-switching con-
dition of the device (that is, after the onset of the positive
feed-back mechanism typical of the device [2]), because the
equalization of the level population is implied in its deriva-
tion. This, in turn, holds only when the electron-interaction
perturbation is dominant.

IV. T HRESHOLDCONDITION

Combining the results of sections II and III one finds that
the electron-kinetic energy that defines the threshold-switching
condition of the device is∆MB+E0 = EC−EM +E0 (for the
symbols refer also to figure 1). Above the threshold-switching
condition one splits the current density of the band asJn =
J th

n + Jn(∆MB), with J th
n = const the current density due to

the band electrons having a kinetic energyEe ≤ ∆sk + E0.
From (4) it follows

ṖE
MB =

σ0

q

(
Jn − J th

n

)
(11)

which, combined with the second of (7), makesν andbM to
depend linearly onJn − J th

n . Inserting such dependences into
(10) provides the relation betweenn andJn − J th

n that holds
above threshold. In particular, the band-electron concentration
at threshold,nth, is found by calculatingn with Jn = J th

n .
When ν2 ≫ 4NbM the band concentration (10) saturates to
bMN/ν (if the trap levels are grouped into a single one, then
M = 1, ν = bM , the expression forn simplifies to (14) of
[2], and the saturation value ofn becomesN ). The expression
of ν can be recast as

ν = nB + (M − 1)N + β (Jn − J th
n ) , (12)

with

nB =
ṖP

MB

αBM

, β =
σ0

qαBM

. (13)

The definition ofnB in (13) is the same as in [2, Eqs. (5,6)].
The form of n = n(Jn − J th

n ) is shown in figure 3 where,
following [2], we have setnB = 1014 cm−3, N = 1019 cm−3.
The values of the other parameters have been fixed toσ0 =
5 × 10−15 cm2, αBM = 10−7 cm3/s, J th

n = 102 A/cm2,
M = 5. The figure shows that near threshold the concentration
of the band electrons increases sharply, to eventually saturate.
In figure 4, then(bM ) relation is zoomed in to better show its
behavior near threshold.
In the spatially-uniform case considered here, the relation
between the total current densityJ and the band-electron
current densityJn is [2, Eqs. (17,18)]

Jn

J
= θ(n) , θ(n) =

µnn

µnn + µT (N − n)
, (14)

where µn, µT are the band and trap mobility, respectively.
Inserting the expressionn(Jn − J th

n ) worked out above into
(14) provides an intrinsic relationJn(J). After calculatingJn

for each value of the bias current densityJ , one determines
the corresponding concentrationn. Then, the electric field
E for each bias point is found fromJn = qµnnE . In this
way the branch of theV (I) characteristic above threshold is
determined.
Finally, the total current density at thresholdJ th is determined
from

J th =
µnnth + µT (N − nth)

µnnth
J th

n . (15)
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Fig. 1. Schematic view of a trap with energy levelsE1 < E2 . . . < EM .
The grey area above indicates the energy band, whose minimum energy is
EC .

V. CONCLUSIONS

The effect of the many-level transitions induced by the co-
operative interactions between band and trap electrons has
been investigated in this work. The main results arei) the
role of the power-like energy dependence of the cross section
σ has been clarified: the parameters∆sk, E0, and r fix the
threshold energy and the sharpness of the behavior ofṖE

sk

around threshold.ii) The dependence oḟPE
sk on the external

perturbation is due to the form of the energy distribution of the
band electrons; the estimate of the integral (1) confirms that
ṖE

sk is an exponentially-increasing function ofEn, which in
turn explains the positive feed-back mechanism in the transport
process [2].iii) The analysis also shows that two mechanisms
contribute to the feed-back: they are the tendency of the level
populations to equalize and the increase inṖE

sk with the band
population; the first one provides a larger supply of electrons
able to make a transition fromEM to the band; then, the
second one makesn to further increase at the expense of
the traps’ population.iv) In the uniform case the dependence
n = n(Jn) is worked out analytically. The heuristic expression
of [2] for the Jn dependence has been replaced here by a
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Fig. 2. The continuous line shows the interaction cross sectionσ calculated
by letting σ0 = 1, r = 11 in (1). Using the normalized energyη = (E −

∆sk)/(kBTL) yieldsσ = ηr . Each bell-shaped curve shows the product ofσ
by the shifted Fermi distribution1/[exp(η−ηn)+1] indicated with the same
symbols on the left part of figure (ηn is defined in the text). The shift in the
Fermi distributions is obtained by changingηn = (En−EC−∆sk)/(kBTL)

by one unit. The corresponding shift in the peak value of the bell-shaped
curves is found by solvingr exp(ηn − η) = η − r for η. The area of each
bell-shaped curve isΓ(r+1)Φr(ηn), thus its dependence onηn is the same as
that of the Fermi integral. In the classical limit it becomesΓ(r+1) exp(ηn).

physical derivation through equation (4) combined with the
analysis of the trap and band populations.
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Fig. 3. The relationn = n[Jn(∆MB)] for n ≥ nth, as found from (10).
It is Jn(∆MB) = Jn − Jth

n . The definition ofβ is given in (13).
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