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Abstract—a stochastic method based on the percolation theory 

and resistor network model, is developed to self-consistently 

simulate the microscopic process of the oxygen vacancies and 

interstitial oxygen ions in transition metal oxide-based resistive 

switching devices under the external electric field. The method 

can simulate the evolution of the oxygen vacancies’ distribution 

and conductive filaments’ geometry under the critical switching 

factors and the correlated electrical properties such as resistance. 

The simulated electrical characteristics were experimentally 

identified, indicating the validity of developed simulation 

methodology. 
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I.  INTRODUCTION  

Transition metal oxide (TMO)-based resistive switching 
memory (RRAM) has been extensively studied as one of the 
most promising candidates for next generation of Non-Volatile 
Memory devices due to its excellent memory and scalability 
performance [1-2]. It has been commonly accepted that 
resistive switching is due to formation and rupture of 
conductive filaments (CFs) and the switching characteristics 
are strongly correlated with the geometry of CFs as a direct 
result of generation and recombination of oxygen vacancies 
(VO) in the switching oxide layer [3-6]. Understanding the 
physical evolution of CFs’ geometry and the correlation with 
RRAM switching characteristics are imperative. In this paper, a 
stochastic method is presented to self-consistently simulate the 
microscopic process of the generation and recombination of VO 
and the transport of interstitial oxygen ions (O

2-
) under the 

external electric field. By using the resistor network based on 
the percolation theory [7-9], the simulation program is 
developed to simulate the evolution of CFs’ geometry during 
the whole switching process with the various operation 
conditions. 

II. PHYSICAL MODEL AND SIMULATION METHOD 

Fig.1 shows various physics processes of VO and O
2-

 
considered in this work. Under the external bias, VO generation 

(process ① ) is modeled as a random process with the 

probability [10-11]: 
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where f is the vibration frequency of oxygen, Ea is the active 
energy of VO, Tloc is the local temperature and Δφ1 is the barrier 
decrease of Ea due to the local electric field. When O

2-
 is 

locating at the neighbor of VO, the recombination process ③ 
occurs with the lifetime t0. The transport of O

2-
 includes three 

physics processes: hopping through interstitial sites (process②), 

release/absorb by the electrode (processes ④⑤). Under the 

external bias, the hopping probability of O
2-

 to the neighbored 
interstitial sites is [12]: 
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Fig.1 Schematic structure ( two electrodes and the sandwiched switching 

oxide layer) used in this work and the physics processes have taken into 
consideration in our simulation. The electrode act as O2- reservoir which 

can release and absorb O2-.   
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where 2 is barrier decrease of Eh due to the local electric 

field, Eh is the hopping barrier of O
2-

.The processes ④⑤ are 

the same as the process ② except the barrier change to Ei [12]. 

Stochastic method is used to simulate the above microscopic 
physical processes. 

In order to simulate the above mentioned microscopic 
processes self-consistently and efficiently, a resistor network 
based on the percolation theory [7-9] is introduced. In this 
model, a resistor is between two oxygen sites or the oxygen site 
and electrode. The IV-characteristic between two VO is liner 

and can be described as: 

                    1/ RUI                                          (3) 

while the resistance between VO and lattice oxygen or two 
lattice oxygen is modeled as: 

         2/)sinh( RUI                            (4) 

where α is a fitter coefficient. For the simplification, we 
assume that the IV characteristics of electrode with VO or 
lattice oxygen are the same as what they are between VO and 
VO or lattice oxygen, respectively. The potential and current 
can be solved by the Kirchhoff law and the local temperature 
can be given by the Fourier heat-flow equation: 

Q



T)(k

t

T
C                                (5) 

where C is the specific heat per unit volume of  TMO,  k is thermal 

conductivity of TMO and Q is the Joule heat power density. All 
physical quantity is updated after every microscopic physical 
process based on the (1) ~ (5). Then the microscopic process 
can be simulated self-consistently. Fig.2 shows the simulation 
flowcharts. The parameters are summarized in Table I. 

III. RESULTS AND DISCUSSIONS 

 
The switching process of TMO RRAM including 

Forming/SET and RESET is simulated. Fig.3 shows the 

 

 
Fig.3 The evolution of Vo and O2- distribution and the corresponding 

local temperature profile during the Forming process. The red and 
green dots represent the Vo and O2-, respectively. It can find that the 

local temperature near to CF is higher which promote the CF to become 

strong. 

Calculate potential and current.

Calculate the probability of 

processes ①~⑤. 

Processes ①~⑤ decided by Monte-

Carlo methods.

Output

Pre-exist VO distribution. 

Calculate temperature distribution. 

VO distribution change
YN

 
Fig.2 Simulation algorithm flow. Note that the temperature was 

calculated at every time step for including the effect of local temperature 

increase.   
 

Table I typical parameters in this work. 

Parameter Value 

vibration frequency: f 1013 Hz[10] 

activation energy of ①: Ea 1.2 eV[10] 

hopping barrier of ②:Eh 1.0 eV[12] 

 hopping barrier of ④⑤:Ei
 1.2 eV[12] 

life time of ③: t0 10-6 s 

R1 104 Ω 

R2 5×1010 Ω 

α 30 

thermal conductivity of TMO: k 5 W/m·K[16] 

specific heat per unit volume of  TMO:  
C 

6×106
 J/m3﹒K[17] 

length of TMO: l 50 nm 

thickness of TMO: d 10 nm 

distance of two oxygen sites: h 0.5 nm 
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Fig.4 The evolution of Vo and O2- distribution and the corresponding 
potential profile during a RESET-SET cycle. The initial state of the 

RESET process is the end state of Forming process which shows in Fig.3. 
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Fig.5 Simulated I-V curve for RESET&SET process. The sweep rate is 

10V/s. Abrupt SET and gradual RESET are reproduced. 

evolution of VO and O
2-

 distribution and the corresponding 
local temperature profile during the Forming process. It can 
find that a fine filament firstly connect the two electrodes 
which results in high local temperature, and then the filament 
quickly become stronger assist by the high local temperature 
under the external voltage. Meanwhile the O

2-
 hops to the 

electrode/TMO interface and is absorbed by the active 
electrode. The resistance of device switching to low 
resistance state (LRS) due to the formation of CF. Fig.4 
shows the evolution of VO and O

2-
 distribution and the 

potential distribution during a RESET-SET cycle. O
2-

 is 
released by the electrode (④) assist by the local electric field 
and the increase of local temperature, and then recombines 
with VO (③), which leads to the rupture of CF and the device 
switching to high resistance state (HRS) during the RESET 

process. While VO forms (①) in the rupture region and CF 

connect the electrodes again, meanwhile O
2-

 hops to the 

electrode (②) and is absorbed by the electrode (⑤) in the 

SET process.  
The correlated macroscopically electric properties are 

also investigated in our simulation. Fig.5 plots the simulated I-

V curve during the RESET and SET process corresponding to 

Fig.4, which coincides to the measurement curve [13-14]. 

Abrupt SET and gradual RESET are reproduced. Current 

compliance is used to avoid the irretrievable breakdown of the 

device during the SET process. The SET voltage is the voltage 

when the current increase abruptly and exceed the current 

compliance during the SET process. And the RESET voltage 

is the voltage when the current reach the maximum value 

during the RESET process. Fig.6 shows the simulated 

statistical distribution of the RESET and SET voltage. It can 

find the uniformity of RESET voltage is better. The simulated 

result is well consistent with the experimental data [15]. The 

statistical distribution of HRS and LRS is also shown in the 

Fig.7. It can find that the uniformity of LRS is better than the 

HRS, which is also consistent with the measurement data [1-2]. 

The variability of HRS and LRS originates from the random 

VO generation/recombination and O
2-

 hopping processes [5].  

 

IV. CONCLUSION 

We present a stochastic method to self-consistently 
simulate the microscopic process of the generation and 
recombination of VO and the hopping of O

2-
 under the 

external electric field to simulate the resistive switching 
process including Forming/SET and RESET both 
macroscopically and microscopically. The well agreement 
between the simulated results and the reported experimental 
data indicates that this new method can be a powerful tool for 
design and optimization RRAM. 
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Fig.6 The statistical distribution of RESET and SET voltage obtained by 

simulated 50 cycles in one device. 
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Fig.7 The simulated statistical distribution of resistance in LRS&HRS for 

50 DC sweep cycles. The read voltage is 0.5V. 
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