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Abstract—An extension of the spherical harmonics expansion
method for the deterministic solution of the Boltzmann transport
equation for the computation of both electron and hole distri-
bution functions is presented. The generation and recombination
of carriers via traps in the band gap is considered in a way
that is consistent with the Shockley-Read-Hall model. Simulation
results for a pn-diode and an n-MOSFET are presented, which
are obtained with only a moderate increase in simulation time
and memory requirements compared to unipolar simulations.

I. INTRODUCTION

Since its introduction in the early 1990s [1], [2], the spher-
ical harmonics expansion (SHE) method for the deterministic
numerical solution of the Boltzmann transport equation (BTE)
has evolved into an attractive alternative to the stochastic
Monte Carlo (MC) method. Recent advances of the SHE
method even allow for the accuracy of full-band MC at a
fraction of the computational cost for three-dimensional device
simulation [3], [4], further increasing the attractiveness of the
method for modern TCAD. Moreover, the SHE method has
already been applied successfully to problems where the MC
method either fails to produce good results within a reasonable
time budget, or fails completely [5].

The SHE method has so far been used for one carrier type
only, while the other carrier type has been modeled by a
continuity equation [6] or ignored at all [7]. However, due to
the absence of generation and recombination in such a setting,
secondary effects cannot be captured accurately. Furthermore,
moment-based approaches are unable to describe the complex
interaction of highly energetic carriers satisfactorily, since
the distribution of charge carriers with respect to momentum
cannot be fully recovered from macroscopic quantities such as
carrier density or average carrier energy only. Consequently, a
bipolar solution of the Boltzmann transport equation provides
higher accuracy and versatility at reasonable computational
cost.

II. THEORY

A coupled system given by the Poisson equation and a BTE
for each carrier type is considered in the following. More
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precisely, the system

−ε∆ψ = ρ , (1)
∂fn

∂t
+ Ln{fn} = Qn{fn, fp} (2)

∂fp

∂t
+ Lp{fp} = Qp{fn, fp} (3)

with permittivity ε, Laplace operator ∆, electrostatic potential
ψ, space charge ρ, electron and hole distribution functions fn,
fp, free-streaming operators Ln, Lp, and scattering operators
Qn, Qp needs to be solved. To avoid notational clutter, only
a single valley is considered, spin degeneracy is assumed,
and the dependence on the spatial variable x, the momentum
h̄k and time t is not written explicitly wherever appropriate.
If Qn{fn, fp} = Qn{fn} and Qp{fn, fp} = Qp{fp}, the
two BTEs decouple, thus no generation or recombination
events are considered. In this work we consider unipolar
scattering processes Qn

η and Qp
η as well as generation and

recombination processes via a single trap level in the band
gap with occupation probability f t [9]:

Qn{fn, fp} =
∑
η

Qn
η{fn}+ (1− fn)Γn

GN
tf t

− fnΓn
RN

t(1− f t)
(4)

with electron generation rate Γn
G and electron recombination

rate Γn
R, cf. Fig. 1. Here, the Pauli principle is considered in

the conduction band and for the traps. Similarly, one obtains
with hole generation rate Γp

G and hole recombination rate Γp
R

the hole scattering operator

Qp{fn, fp} =
∑
η

Qp
η{fp}+ (1− fp)Γp

GN
t(1− f t)

− fpΓp
RN

tf t .

(5)

An extension to multiple trap levels without inter-trap interac-
tions is obtained by a summation over all trap levels. However,
we restrict our discussion to a single trap level for reasons of
clarity.

Unipolar scattering processes for electrons and holes de-
scribed by Qn

η and Qp
η such as phonon scattering or impurity

scattering are treated in the usual manner [3]. Moreover, fn

and fp are coupled via the trap occupancy f t, for which the
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Fig. 1. Schematic for the generation and recombination of electrons (with
rates Γn

G, Γn
R and momentum h̄kn) and holes (with rates Γp

G, Γp
R and

momentum h̄kp) via a trap with occupation probability f t. H denotes total
energy.

rate equation is given by [9]

∂f t

∂t
=

1

(2π)3

∫
B
fn(k)Γn

R(k)(1− f t)

− (1− fn(k))Γn
G(k)f t dk3 ,

(6)

where the integration is carried out over the Brillouin zone B.
In steady state, which is considered in the remainder of this
work, the net generation/recombination rates of electrons and
holes are equal, thus∫
B
fn(k)Γn

R(k)(1− f t)− (1− fn(k))Γn
G(k)f t dk3

=

∫
B
fp(k)Γp

R(k)f t − (1− fp(k))Γp
G(k)(1− f t) dk3 .

(7)

Since the trap occupancy f t does not depend on the momen-
tum h̄k, the explicit formula

f t =
[∫
B

Γn
R(k)fn(k) dk3 +

∫
B

Γp
G(k)(1− fp(k)) dk3

]
/[∫

B
Γn
R(k)fn(k) + Γn

G(k)(1− fn(k)) dk3

+

∫
B

Γp
R(k)fp(k) + Γp

G(k)(1− fp(k)) dk3
]

(8)

for the trap occupation probability is obtained, which implies
0 ≤ f t ≤ 1 for 0 ≤ fn ≤ 1 and 0 ≤ fp ≤ 1. The
recombination rates are

Γn
R(k) = σnvn(k) , Γp

R(k) = σpvp(k) , (9)

while the generation rates at equilibrium are obtained by the
principle of detailed balance [10] as

Γn
G(k) = σnvn(k) exp

(Ht −Hn(k)

kBT

)
, (10)

Γp
G(k) = σpvp(k) exp

(Hp(k)−Ht

kBT

)
, (11)

with trap capture cross sections σn and σp, velocities vn and
vp, total trap energy Ht, and total carrier energies Hn(k),
Hp(k) in the conduction and the valence bands, respectively. It
is important to note that (4)-(11) are the fundamental equations
used in the derivation of the Shockley-Read-Hall (SRH) model
before further approximations are applied in order to obtain
closed-form solutions [11].

III. SPHERICAL HARMONICS EXPANSIONS

The spherical harmonics expansion needs to be applied to
the system (1)-(5) with (6) in the transient case or (8) in
steady state. Since only the scattering operators are modified
with respect to two separate unipolar solutions of the BTEs,
it is sufficient to consider the projections of (4) and (5).
Additionally, fn does not occur explicitly in the BTE for fp

and vice versa. Thus, fn and fp are only implicitly coupled
via the trap occupancy f t, which does not depend on the
wave vector and hence does not interfere with projections
in momentum space. Multiplication of a spherical harmonic
Yl,m, multiplication with a delta distribution for integration
over equi-energy surfaces, and integration over the Brillouin
zone results in

Qn
l,m{fn, fp} =

∑
η

Qn
η;l,m{fn}

+ (
δ0,0;l,m
Y0,0

− fnl,m)Γn
GN

tf tZn

− fnl,mΓn
RN

t(1− f t)Zn

(12)

for electrons, and

Qp
l,m{f

n, fp} =
∑
η

Qp
η;l,m{f

p}

+ (
δ0,0;l,m
Y0,0

− fpl,m)Γp
GN

t(1− f t)Zp

− fpl,mΓp
RN

tf tZp .

(13)

for holes. Here, the orthonormality of spherical harmonics
on the unit sphere has been used, Qn

η;l,m and Qp
η;l,m denote

the projected unipolar scattering operators, Zn and Zp are
the isotropic approximations to the densities of states in the
conduction and the valence band, respectively [3], [8], and
δ0,0;l,m is zero unless l = m = 0, in which case it is one.
Note that if the Pauli principle is ignored in the conduction
and in the valence bands, which is commonly the case in order
to obtain linear scattering operators for a majority of scattering
processes, only the regeneration terms containing Γn

R and Γp
R

depend on the expansion coefficients fnl,m and fpl,m. On the
other hand, the Pauli principle must not be ignored for the traps
in order to model the underlying physical processes correctly.

IV. RESULTS

The proposed bipolar SHE method is implemented in
our free, multi-dimensional open-source SHE simulator Vi-
ennaSHE [13], which is used for all simulations considered
in the following. Devices at room temperature are simulated
using capture cross sections σn = σp = 3.2× 10−16 cm2 [9].
Timings are taken on a machine equipped with a AMD II X2
255 dual-core processor.

First, the self-consistent one-dimensional simulation of a
500 nm pn-diode with a doping of 1016 cm−3 in the n-
and p-region, respectively, and 400 spatial grid points is
considered. An energy spacing of 12.5 meV is used, while the
energy range is chosen such that the kinetic energy range in
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Fig. 2. Electron (top) and hole (bottom) energy distribution functions of a
pn-diode in reverse bias.
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Fig. 3. Trap occupancy f t in the pn-diode.

both the conduction and the valence band extends to at least
1 eV. The trap density is taken to be 1015 cm−3 uniformly
over the device. Acoustic and optical phonon scattering as
well as ionized impurity scattering are included as linear
scattering operators. The energy distribution functions (EDFs)
for both carrier types of the simulated reverse-biased pn-diode
is depicted in Fig. 2, where the conduction and valence band
edge as well as the band gap is readily visible. An energy
barrier due to the reverse bias for electrons willing to travel
from the n-region to the p-region and vice versa for holes is
also visible in the distribution function.

The trap occupancy f t for a trap-level 0.1 eV above the
center of the band gap along the diode is shown in Fig. 3. At
reverse bias, traps are increasingly occupied in the n-region,
while the p-region is depleted. With increasing forward bias,
the trap occupancy becomes almost uniform over the device.

The comparison of the number of even-order SHE un-
knowns entering the linear solver for various bias conditions in
Fig. 4 shows an overall increase by a factor of two compared
to unipolar SHE for each nonlinear iteration step for the
solution of the coupled Boltzmann-Poisson system. The linear

Fig. 4. Comparison of the even-order unknowns for unipolar and bipolar
SHE. The number of unknowns depends almost linearly on the applied bias
due to the H-transform.

Fig. 5. Comparison of linear solver time per nonlinear iteration for unipolar
and bipolar SHE. A fluctuation by more than a factor of two is observed in
the bipolar case.

dependence of the number of unknowns on the applied bias
is a consequence of the H-transform [14].

Fig. 5 illustrates the single-threaded linear solver execution
times obtained in each nonlinear Gummel iteration step. De-
pending on the polarity of the applied bias, the total solution
time is dominated by one of the two carrier types. Furthermore,
an increase of the solver time at higher bias is observed, which
is, however, also visible in the unipolar case.

The EDFs obtained from the simulation of an n-MOSFET
with a channel length of 100 nm, the same trap parameters
as for the pn-diode, and at two different bias conditions using
bipolar SHE on an unstructured, spatially triangular grid are
depicted in Fig. 6. For simplicity, the EDFs are clamped to
an equilibrium Maxwell distribution at the source and drain
contacts, which leads to a boundary layer in the solution at the
contacts. This allows for a direct comparison of the EDFs for
heated electrons in the drain region as well as heated holes in
the source region with the equilibrium Maxwell distributions.
For the case of a high gate voltage, a resistor-like linear shape
of the conduction band edge from the source towards the
drain is obtained. However, at low gate voltage, where the
device is in saturation mode, a high voltage drop between
channel and drain region is obtained. The electron distribution
function indicates a smaller electron population at the end of
the channel than for a high gate voltage.

Fig. 7 illustrates the computed trap occupancies f t in the
n-MOSFET at two different operating conditions. At high gate
bias, trap occupancies right below the gate oxide are increased,
which stems from the formation of the channel. A low occu-
pancy is obtained in the source region, while a high occupancy
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(a) VDS = 1 Volt, VG = 1.2 Volt.

(b) VDS = 1 Volt, VG = 0.2 Volt.

Fig. 6. Energy distribution functions in an n-MOSFET at two different
operating conditions.

is obtained in the drain region. Conversely, for the case of
low applied gate voltage, only a very low trap occupancy is
obtained right below the gate oxide. Nevertheless, the high
occupancy in the drain region is similar to the case of a high
gate voltage.

V. CONCLUSION

The first self-consistent device simulations using the
SHE method for deterministic numerical solutions of the
Boltzmann-Poisson system for both carrier types are presented.
The doubling of the number of unknowns and the moderate
increase in simulation times compared to unipolar SHE are a
small price to pay for the many new possibilities such as the
modeling of high energy effects. For example, a bipolar SHE
method paves the way for studies of avalanche effects due
to impact ionization at a much higher amount of detail than
with macroscopic models, while simulation times are orders
of magnitude smaller than with the MC method.

(a) VDS = 1 Volt, VG = 1.2 Volt.

(b) VDS = 1 Volt, VG = 0.2 Volt.

Fig. 7. Trap occupancy in the simulated MOSFET device at two different
operating conditions with a contour spacing of 0.033.
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