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Abstract—Process variation has become a serious concern in 
nanometer technologies. Designs with competitive margins rely 
on well-characterized statistical models, which must predict the 
magnitude and scalability of variability accurately. In this paper, 
we propose a novel approach in creating the statistical models, 
which tracks the global variation correlation among logic and 
SRAM devices, hence more realistic. The simulation result is 
verified with TSMC N28 technology silicon. Two types of circuits, 
SRAM Vccmin calibration and a SRAM tracking circuit with 
logic, are discussed in this paper. Different simulation setups are 
applied on these two circuits to understand the impact of device 
correlation for the SRAM performance and design margin 
setting.  
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I.  INTRODUCTION 
In most technologies, SRAM and logic devices usually 

share many process steps. As a result, they are impacted by the 
same global variation sources, such as oxide thickness, channel 
length, and width variations. Traditionally the SRAM and logic 
variation models are constructed relative independently. The 
global process variation correlation between SRAM and logic 
devices cannot be reflected using the worst-case corner 
simulation. For example, setting both the logic/SRAM model 
corners to fast assumes the variation correlation equal to 1. On 
the other hand, setting the logic model corner to fast and the 
SRAM model corner to slow assumes the variation correlation 
equal to -1. None of these corner combinations truly reflects 
the global process variation correlation between SRAM and 
logic devices. In view of this issue, we developed a new 
methodology for model providers to build this correlation 
through Monte Carlo simulation. We first characterize the 
global variation correlation coefficient by the data collected 
from two array structure test keys. A correlation matrix is then 
defined by these coefficients to describe the device correlation 
for paired devices within the chip. We demonstrate the 
advantages of this new modeling methodology on two 
applications with measured silicon data. The first case is 
SRAM Vccmin calibration. The correlation coefficients within 
SRAM cell between PG/PU/PD are examined. The result 
shows a different correlation coefficient setting on SRAM 
calibration could cause 30~50mV Vccmin shift easily. The 
second case is SRAM/Logic tracking circuit. In this case, the 
correlation matrix has been extended to include SRAM and 

logic devices. Using this new modeling methodology, the 
impact of correlation matrix designers can achieve more 
competitive designs with less design margins reserved. 

II. MODELING METHODOLOGY 
The statistical model for a single device type can be 

implemented based on measured/extracted SPICE parameters 
[1] or principle component analysis (PCA) approach [2][3]. 
The variation sources are usually represented by a set of 
independent random numbers with Gaussian distributions, 
which are directly or indirectly linked to the parameters in a 
compact model so that Monte Carlo simulation can perform. 
For example, a SPICE parameter (such as L, W, and Vth0, etc.) 
with variability can be presented by the following equation: 

 

where SP_dev1 is a SPICE parameter for a given device (e.g. 
dev1) and ran{1,2,3..}_dev1 are independent random numbers 
representing the random global variation sources for dev1. 
Fig.1 below shows PCA based Monte Carlo model validation 
with TSMC N28 technology. Two electrical parameters shown 
in the plot are the current measured from two bias conditions. 
Both of the variation magnitude and correlation between these 
two parameters are well modeled. Since the electrical 
parameter correlation is defined and self-consistent within 
compact model, no additional correlation control is needed. 

 

 

 

 

 

 

 

 

Figure 1.  The validation for silicon and 1000 Monte Carlo runs. Two 
electrical parameters are device current measured at different bias conditions 

A. Correlation between two devices 
Similarly, the parameter variability of a different device 

type (dev2) can be expressed as 
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Traditional modeling approach either makes dev1 and dev2 
uncorrelated or fully correlated, which may not be correct. An 
example is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

Figure 2.  Two Simulation results for Logic and SRAM devices. One is with 
correlation coefficient R2=0.9 and the other one is without any correlation. 

 In this work, we developed the following variability 
equations:  

 

 where 

where 

 

 

 

 

The equations are chosen so that the variability of the devices 
in Monte Carlo simulation is unchanged. However, the 
correlation between these two devices can now be controlled 
by the weighting factor, 1w , and can be characterized by data. 

B. Correlation between two groups of devices 
The methodology can be extended to the case for more than 

two devices. Before adding correlation information, the spice 
parameter variability equations are expressed as: 

 

 

 

 

To model the correlation among these devices, a correlation 
matrix is developed as shown in Fig. 3. Each element in the 
matrix represents the correlation coefficient (R) between any 
pair of devices. The weighting factor, wi,j, is characterized from 
silicon or given specifications. In addition, the random 
numbers need to be reconstructed listed in Eq. (6) to reflect the 
correlation information specified in the correlation matrix 

while with no impact to the original variation magnitude 
applied in Eq. (5). 

 

 

 

 

 

 

 

 

Figure 3.  The correlation matrix for multiple devices. The weighting factor, 
Wij, represents the correlation coefficient between two devices. 

  

 

 

where, the coefficients used in the expression must satisfy the 
following conditions.  

 

 

 

 

 

SRAM and Logic devices have their own correlation 
coefficient matrices, R_SRAM and R_logic. Finally, we 
integrated them into a unified matrix. In this unified matrix, we 
can then add the correlation between login and SRAM devices 
as shown in Fig. 4. 

 

 

 

 

 

 

 

 

Figure 4.  The correlation matrix for multiple SRAM and Logic devices. The 
weighting factor, Wij, represents the correlation coefficient between two 
devices. 

C. Random number reduction 
In practice, the size of the correlation matrix can be quite 

large as the number of logic and SRAM devices increasing. 
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This adds difficulty in creating/maintaining the model as well 
as characterizing cell libraries. To make this approach more 
feasible, we can reduce the number of random variables by 
applying another layer of PCA on the correlation matrix shown 
in Fig. 4 or by other means. With PCA, the random numbers 
used in Eq. (6) become 

 

 

 

 

where PC1~PCn  are independent random numbers and α~ν are 
their associated coefficients obtained from PCA. The new 
ran1_dev1’ obtained from Eq. (8) can keep the same variation 
magnitude as that of ran1_dev1~ ran1_devm used in Eq. (5). In 
addition, the number of redefined principle components (n) is 
usually smaller or equal to the number of original random 
number (m). If the correlation coefficients in the matrix are not 
uniform among all the devices and dominated by a few selected 
devices, the random number reduction rate will be significant. 
The logic-SRAM joined correlation coefficient matrix 
described as Fig. 4 usually exhibit a similar pattern, so the 
random number reduction is an attractive enhancement to 
reduce the matrix size. Fig. 5 shows the comparison between 
the case with 20% reduction rate and the original one. It makes 
almost no impact to simulation results.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  After random number reduction from 5 (black) to 4 (grey), the two 
set of results are still identical in terms of range and correlation. 

III. IMPACT ON CIRCUIT DESIGN 
In this section, we will discuss the impact of this new 

modeling methodology on circuit level. In the first case, the 
study focuses on a single type of device, a 6T SRAM Vccmin 
calibration, so the size of correlation matrix is still relatively 
small. In the second case, the discussion is on SRAM/Logic 
tracking circuit for the design margin setup. Due to the 
combination of SRAM and logic devices, the size of 

correlation matrix is bigger. As a result, the random number 
reduction is applied.  

A. SRAM Vccmin calibration 
The Vccmin calibration is a tough challenge for the 

technology and model engineers [4][5][6]. It involved with lots 
of modeling and measurement details. In this verification, the 
impact of correlation among 3 transistors, PG, PU and PD, 
within a 6T SRAM cell is reviewed. The first step is to 
construct the correlation coefficient matrix as shown in Fig. 3. 
Each element of the matrix is extracted from paired array 
structure. The plot below shows the silicon and model 
verification on the saturation threshold voltage (Vts) for PG/PD, 
PG/PU and PU/PD correlation respectively. Both variation 
magnitude and correlation have been characterized. Some 
correlation is observed between PG/PD. However, the 
correlation between PU/PD and PU/PG is relatively low.  

 

 

 

 

 

 

 

Figure 6.  Correlation calibration for PG/PD/PU devices. PG/PD correlation 
is stronger than PG/PU and PD/PU correlation. 

After calibrating the device level model characteristics and 
their corresponding correlation, the Vccmin distribution can be 
achieved through Monte Carlo simulation. The silicon and 
model matching is shown in Fig. 7. The simulation with 
calibrated correlation model matches the whole Vccmin silicon 
distribution closely. Another test case with R=1 for PG/PD is 
also attached in the same plot for comparison. Without a 
correct correlation model, it is easily found the matching is off, 
especially for the distribution tail. The gap between two models 
could be as large as 30~50mV for 95% Vccmin if the 
correlation is not calibrated properly. The impact could be 
bigger for the case with a larger global variation. 

 

 

 

 

 

 

 

 

 

Figure 7.  Vccmin simulation. Curve I: model with correct correlation. Curve 
II: Model  with fully correlated PG/PD devices. There is a noticable gap at tail. 

dev1’ dev2’ dev3’ dev4’ dev5’

de
v5

’
de

v4
’

de
v3

’
de

v2
’

de
v1

’

before reduction        after reduction

PD                                     PG                       PU

PU
   

   
   

   
   

   
   

   
   

 P
G

   
   

   
   

   
   

   
   

   
  P

D

1000 M.C. Sim Silicon

)8(

_1

_1
_1

21
'

22212
'
2

12111
'
1

nmmmm

n

n

pcpcpcdevran

pcpcpcdevran
pcpcpcdevran

νβα

νβα
νβα

+++=

+++=
+++=

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1 0 0.1 0 .2 0 .3 0.4
V cc ,m in(a .u .)

C
D

F(
%

)

S ilicon
Curve I I
Curve I

- 161 -



B. SRAM tracking circuit with logic 
In this example, we review the impact of correlation to the 

design guard band setting. First of all, we characterized the 
correlation of global variations between logic and SRAM 
devices based on the saturation threshold voltage (Vts) from a 
TSMC N28 technology. The silicon and model simulation 
comparison is shown in Fig. 8. As shown in the plot, there is 
certain correlation between SRAM and logic.   

 

 

 

 

 

 

 

 

 

Figure 8.  Silicon variation with 1000 M.C. runs for the correlation of logic 
and SRAM global variation. Both data are taken from array structures to 
eliminate the local variation. 

Secondly, we examine the impact of global variation 
correlation of logic and SRAM device on a SRAM tracking 
circuit using the model created above. The SRAM tracking 
circuit is a logic delay chain for SRAM bit cell read 
performance monitoring. It is typically designed to provide a 
feedback control of word-line pulse width to ensure correct 
read operation. If there were no correlation, designers would 
need to ensure circuit functionality under the worst-case 
scenario, i.e. very fast logic devices and very slow SRAM 
devices. This would result in a very conservative design of the 
tracking circuit. If the correlation is built into the model, the 
design margin can be much reduced, as this extreme condition 
will not occur. The design margin defined here represents the 
extra word-line pulse width for SRAM to develop bit-line 
differential signal for sensing out. A larger design margin 
degrades SRAM performance and consumes more active 
power due to larger signal swing. Fig. 9 shows the simulation 
results with four different test cases. Method-1 uses corner 
simulation and assumes no correlation between logic and 
SRAM devices. It gives the smallest design margin. Method II 
applies two independent Monte-Carlo simulations of global 
variation. Even though we have not included the correlation, 
the design margin gains 10%. Method III is similar to Method 
II except that the correlation between logic and SRAM global 
variations is included. The design margin gains another 10%. 
Method IV assumes full correlation (R=1) and has the largest 
design margin, which is of course is too optimistic. This study 
tells us that the correlation in global variation between logic 
and SRAM devices must be well characterized and included in 
the model when doing Monte Carlo simulation in order to 
minimize the design margins reserved. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Method I: Corner without correlation; Method II: M.C. without 
correlation; Method III: M.C. with R2=0.6; Method IV: M.C. with R=1. The 
design margin evaluation is the simulation setup dependent. 

 

IV. CONCLUSION 
In this paper, we demonstrated a new modeling 

methodology to reflect the correlation of global variations 
among different devices. Two examples are discussed, SRAM 
Vccmin calibration and SRAM/logic tracking circuit margin 
optimization. Different simulation setups are applied on these 
two circuits to understand the impact of device correlation. The 
noticeable difference is observed based on various correlation 
numbers. To reflect silicon behavior and achieve competitive 
designs, a well-characterized statistical model with a built-in 
global variation correlation is essential. 
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