
1

High-Quality Mesh Generation

Based on Orthogonal Software Modules
Josef Weinbub∗, Johann Cervenka∗, Karl Rupp∗†, and Siegfried Selberherr∗

∗Institute for Microelectronics, TU Wien, Vienna, Austria
† Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria

Email: {weinbub,cervenka,rupp,selberherr}@iue.tuwien.ac.at

Abstract—To provide simulation software in the field of TCAD
with the utmost flexibility regarding generation and adaptation of
meshes, a generic and high-quality meshing library, ViennaMesh,
has been developed. The library is coded in C++ and utilizes mod-
ern programming techniques to wrap tasks, like mesh generation
and mesh adaptation, into functional objects, which can then be
concatenated to form the desired meshing process. Additionally,
a meta-selection environment provides the ability to select a
mesh generation kernel based on properties already defined at
compile time. Code examples are depicted and briefly discussed.
Moreover, several enhancements to existing mesh adaptation
methods have been made, which are demonstrated based on
meshes provided by industrial partners.

I. INTRODUCTION

The transition from real world devices to the computer

domain requires a discretization, meaning that a finite set of

information, like geometry and topology data, approximately

represents the actual device [1]. This fundamental mapping

step is typically realized by meshing tools. Several research

areas deal with various aspects of meshes, most importantly

generation techniques, but also adaptation and classification

techniques [2] [3]. Several tools are publicly available offering

different approaches and properties [4] [5] [6] [7]. The differ-

ent applied approaches offer advantages and disadvantages.

For example, the advancing front based algorithms offer good

control mechanisms for generated mesh element size and

quality, but on the contrary rely heavily on the quality of the

input boundary mesh and the colliding fronts.

Moreover, high-quality mesh generation for Technology

Computer Aided-Design (TCAD) is a demanding field due

to the challenging input geometries consisting of thin layers

and complex surfaces [8]. Therefore, we focus on unstructured

meshing tools based on simplicial mesh element topologies,

for example, triangles and tetrahedrons. This type of mesh

supports local mesh adaptation by simultaneously keeping the

global number of mesh elements to a minimum [2]. For TCAD

applications this capability is highly important not only due

to the complex input geometries, but also due to the local

regions of interest within simulation domains, for example,

the conducting channel of a MOSFET.

Those regions typically require locally a denser mesh, as

otherwise the numerical error would be too large or numerical

oscillations occur, which may ultimately render the simulation

results unfeasible.

In addition to the challenges posed by the input geometry,

the discretization error of most discretization schemes strongly

depends on the underlying mesh due to the error which

degenerated elements are likely to introduce [9]. Consequently,

it is essential for simulation software in the field of TCAD to

have access to high-quality mesh generation kernels.

Additionally, simulation applications have to be granted

access to the various mesh related functionalities of the

meshing tools to control, for example, the mesh adaptation

process for the simulation at hand. This is typically realized

by utilizing the Application Programming Interfaces (APIs) of

the respective meshing tool. This utilization is usually feasible

for a small number of meshing libraries, but it is not applicable

when the number of interfacing tools increases. Each library

provides its own specific API and therefore requires special

treatment, which results in code duplication and ultimately

in programming overhead. This fact introduces the need for

an additional generic meshing layer which provides a unified

interface to the multitude of meshing tools.

To tackle the introduced challenges, ViennaMesh [10] has

been developed. The library not only provides a unified API

access to various mesh related tools but also an improved

hull mesh adaptation algorithm. The adapted hull mesh suits

excellently for volume mesh generator kernels based on the

advancing front [11] algorithm. The essence of this particular

algorithm is to start from an initial set of boundary elements,

which forms the so-called front, and then advance into the

simulation domain by attaching mesh elements to the front.

Consequently, if the front consists of high-quality elements,

the probability of generated high-quality mesh elements is

increased significantly.

This work is organized as follows. Section 3 introduces the

generic meshing library ViennaMesh. Section 4 discusses the

improvements of our hull mesh adaptation algorithm. Volume

mesh results based on geometries provided by industry are

depicted in Section 5.

978-1-61284-418-3/11/$26.00 © 2011 IEEE - 139 -

P1

2

II. A GENERIC MESHING LAYER

ViennaMesh has been implemented to provide a unified

access to various meshing related algorithms with special

focus on the demands of modular device simulation software.

Among these demands are extendibility and orthogonality of

the individual software components. Extendibility refers to the

ability to conveniently add additional mesh generation kernels

as well as mesh adaptation and classification algorithms. This

is especially of interest, as there is no unique approach to

adapt meshes as well as to classify them. Mesh classification

enables judgment of whether or not a mesh is of appropriate

quality. Orthogonality of the software components allows to

combine various meshing routines to setup specialized mesh

generation process chains. By utilizing these possibilities the

functionality as well as the robustness of ViennaMesh has

been significantly improved. Although our major focus is on

volume mesh generation, hull generation and adaptation are

mandatory preprocessing tasks to prepare the input geometries

for the volume generation step. Typically, three different major

meshing related tasks can be identified: generation, adaptation,

and classification.

To achieve a decoupling of the multitude of meshing tasks,

modern programming techniques in C++ are applied, being

the functional, meta, and generic programming paradigms.

The functional approach is used to model a dynamic ap-

proach of defining a meshing task. Different meshing tools

can be arbitrarily concatenated to form a specific meshing

process. Therefore, the input data which contains the input

geometry enters the beginning of the meshing process chain

and is forwarded from one module to the other. In the end the

result can be extracted, as depicted in the following.

1 bnd_reader_type bnd_reader("filename.bnd");

2 typedef wrapper<bnd, bnd_reader> bnd_wrapper_type;

3 bnd_wrapper_type data(bnd_reader);

4 typedef mesh_generator<cervpt>::type hull_mesher_type;

5 hull_mesher_type hull_mesher;

6 typedef mesh_adaptor<orienter>::type orient_adapter_type;

7 orient_adapter_type orienter;

8 typedef mesh_adaptor<quality>::type quality_adapter_type;

9 quality_adapter_type quality;

10 typedef mesh_generator<netgen>::type volume_mesher_type;

11 volume_mesher_type volume_mesher;

12

13 volume_mesher_type::result_type result=

14 volume_mesher(quality(orienter(hull_mesher(data))));

A reader object is instantiated and the input geometry is

extracted and transferred to the specific data structure (Line 1).

A wrapper is used to provide a unified access for arbitrary

data structures to ViennaMesh (Lines 2,3). Note that we apply

a wrapper approach to decouple the meshing modules from

the input data structure type. This enables the utilization of

ViennaMesh with other applications or libraries without the

need to copy the data into a new data structure. Instead,

a wrapper has to be provided which provides traversal and

access mechanisms without unnecessary copy operations. A

hull mesh generator, orienter, and quality adaptation module

is created (Lines 4-9). A volume mesh generator is constructed

(Lines 10,11). The various meshing modules are concatenated

and the result is retrieved (Lines 13,14). The basic principle

is depicted in Figure 1.

Hull Generation Hull Adaptation Volume Generation

Fig. 1: Applied meshing process chain. An initial hull mesh is

generated, which is then adapted in regard to orientation and

quality. The adapted hull mesh is then used as input for the

volume meshing step.

Meta-programming techniques are applied to provide a

selection mechanism for mesh generation tools based on de-

sired properties during compile time. If information about the

input geometry is available during compile time, for example,

the data structure which holds the input geometry provides

meta-information, the mesh generation selection setup can be

coupled with the data structure. Hence, no run time selection is

required to choose a suitable mesh generator for a specific in-

put geometry. This approach has another important advantage,

as the underlying mesh generation kernel is decoupled from

the application. As can clearly be seen in the following code

snippet. There is no explicit indication which mesh generation

kernel is actually used, only the properties which the mesh

generator must provide.

1 typedef make_map<

2 key::celltype, key::geomDim,

3 val::simplex, val::three >::type properties;

4 typedef compute_mesh_generator<

5 properties>::type mesh_generator;

The associative relations in Line 2 and Line 3 define the

properties of the requested meshing kernel. A meta-function

evaluates the requested properties and selects a suitable mesh-

ing kernel to be further used as basis for the generation task

(Lines 4, 5). In this case a three-dimensional, simplicial mesh

generator is selected, which could be based on, for example,

TetGen [5] or Netgen [11]. Note, that the set of properties can

be arbitrarily extended to provide highly adjustable property

setups.

Generic programming is used as the fundamental program-

ming paradigm, and can be seen as the basis for the applied

meta and functional programming paradigms. It enables to

achieve, for example, highly extendable code, as for example

depicted in the following.

1 typedef mesh_generator<netgen>::type mesh_generation_type;

2 typedef mesh_adaptor<orienter>::type mesh_adaptation_type;

Compile time tag-dispatched meta-functions are used to de-

clare a mesh generator and adaptation type. The tag system

can be easily extended to support additional meshing tools.

III. IMPROVED HULL MESH ADAPTATION

We present the continuation of previous work carried out at

our institute regarding three-dimensional, unstructured mesh

generation for TCAD [12] [13]. The major focus of this

work is on improving the hull mesh adaptation process with

regard to robustness and quality. This significantly improves

the subsequent volume mesh generation step, as the hull mesh

is the basis for the volume mesh generation. As already noted,

this holds especially true for advancing front algorithms.

- 140 -

3

Among the improvements is an algorithm based on the well-

known edge-removal [14] approach, which removes highly

degenerated hull elements after the initial hull mesh generation

step (Figure 2). The algorithm removes triangular hull mesh

elements with a large ratio of the longest to the shortest edge

by collapsing the shortest edge.This significantly improves the

robustness of the successive mesh generation and adaptation

tools. For example, the distinction between the two vertices of

very short edges may become numerically inconclusive.

Fig. 2: Principle of the edge-removal algorithm. A short edge

is removed and the corresponding vertices are merged.

Furthermore, an orientation tool has been implemented

which is capable of orienting the hull mesh elements of a

multi-segment, also known as multi-material, meshes. The

orientation is performed counter-clockwise when looking onto

the mesh element. Such an orientation is, for example, required

by Netgen [4]. This is especially of high importance as input

meshes might not be oriented either consistently or in a

counter-clockwise manner. The challenge of orienting a hull

mesh is to determine whether or not the normal vector of a

mesh element is pointing outwards or inwards with respect

to the segment. To overcome this obstacle a ray-intersection

test has been implemented. The algorithm generates a normal

vector of one surface mesh element of a segment and sets

up a ray pointing in the direction of this vector. This ray is

then tested, if it intersects with any of the cells on the related

segment. If the number of intersections is zero or an even

number, the normal vector points outwards. On the contrary,

if the number is an odd number, the vector points inwards

and therefore has to be corrected (Figure 3). Note, that this

approach is based on the assumption that each segment of

the mesh for itself is a closed (without a boundary) two-

dimensional manifold [15]. The intersection algorithm of the

Computational Geometry Algorithms Library (CGAL) [6] has

been utilized.

4x 3x

Fig. 3: Principle of the ray-intersection algorithm based on

an exemplary two-dimensional, concave mesh domain. The

left ray intersects an even number of times, hence it points

outwards. The right ray crosses the surface an odd number of

times, therefore the ray points inwards.

This ray intersection test is performed for one hull element

per segment. When its direction has been determined and

possibly corrected, the orientation is then consistently imposed

on the other elements of the segment.

IV. RESULTS

Figures 4-7 depict results for various industry provided

meshes in the field of TCAD. The volume meshes are shown

both for the raw and the adapted input hull meshes. Our

adaptation tool has been used to improve the quality of

the hull mesh. Netgen (Version 4.9.13) has been used as

volume meshing kernel. For the volume mesh generation tasks,

the default parameters result in poor mesh qualities (top).

However, as our hull adaptation module is capable of self-

adjustments, no human parameter interaction at all is required

to achieve high-quality meshes (bottom). Note that often the

number of cells and points is increased due to the adaptation.

However, as depicted in Figure 6 a significant decrease in

cells and points can sometimes be achieved by simultaneously

increasing the overall mesh quality. Furthermore, we use a spe-

cific classification scheme for triangles and tetrahedrons [13].

By analyzing the dihedral angles of a tetrahedron four different

types of degeneracy are identified: wedge, spade, cap, and

sliver. Furthermore the triangular faces of a tetrahedron can

be analyzed by investigating the angles and the edge ratios,

which therefore yields three different types of degenerated

triangles: needle, slat, and spindle. Aside from the degenerated

elements a good element, a so-called round, is characterized

by edges of similar length [9]. Generally, a high percentage of

round elements indicates a high-quality mesh, whereas a high

percentage of degenerated elements, like slivers or wedges,

denote a low-quality mesh. A significant increase of the mesh

quality can be identified for all meshes.

cells 2763

points 972

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

cells 19007

points 5219

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

Fig. 4: Comparison of the generated volume meshes by Netgen

of the initial (top) and the adapted (bottom) discretization of

a SRAM cell. Almost all degenerated elements have been

removed, especially the wedges, needles, and slats. Addition-

ally, the percentage of the round elements has been increased

remarkably from 27% to 89%.

- 141 -

4

cells 522

points 198

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

cells 1096

points 355

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

Fig. 5: Comparison of the generated volume meshes by Netgen

of the initial (top) and the adapted (bottom) discretization of

a lithographically generated structure. The presence of the

degenerated wedge elements has been decreased drastically,

whereas the percentage of the round elements has been in-

creased significantly from 6.3% to 76%.

cells 18205

points 5856

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

cells 5829

points 1875

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

Fig. 6: Comparison of the generated volume meshes by Netgen

of the initial (top) and the adapted (bottom) discretization of a

trench structure. The degenerated needle and wedge elements

could be reduced considerably, while the percentage of the

round elements has been more than doubled, from 30% to

71%. Aside from the significant mesh quality improvement,

the number of mesh elements has been reduced drastically.

V. CONCLUSION

In conclusion, we provide a means to access different

meshing modules in a unified way, to tackle the challenge

of mesh generation for TCAD. Those meshing modules cover

generation, adaptation, and classification. The generic library

ViennaMesh has been introduced to fulfill the discussed re-

quirements. ViennaMesh is open-source and publicly avail-

able [10].

cells 3750

points 1273

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

cells 4829

points 1590

0

50

100

ca
p

n
ee
d
le

ro
u
n
d

sl
at

sl
iv
er

sp
ad
e

sp
in
d
le

w
ed
g
e

Fig. 7: Comparison of the generated volume meshes by Netgen

of the initial (top) and the adapted (bottom) discretization of an

interconnect structure. An overall decrease of the degenerated

elements can be identified. The percentage of the round

elements has been increased from 46% to 85%.

ACKNOWLEDGMENTS

This work has been supported by the European Research

Council through the grant #247056 MOSILSPIN. Karl Rupp

gratefully acknowledges support by the Graduate School PDE-

Tech at the TU Wien.

REFERENCES

[1] M. Bern and D. Eppstein, “Mesh Generation and Optimal Triangulation,”
Computing in Euclidean Geometry, pp. 23–90, 1992.

[2] J. Shewchuk, “Delaunay Refinement Mesh Generation,” Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, 1997.

[3] B. Klingner and J. Shewchuk, “Agressive Tetrahedral Mesh Improve-
ment,” in Proceedings of the International Meshing Roundtable, 2007,
pp. 3–23.

[4] “Netgen.” [Online]. Available: http://sourceforge.net/projects/netgen-
mesher/

[5] “Tetgen.” [Online]. Available: http://tetgen.berlios.de/
[6] “Computational Geometry Algorithms Library.” [Online]. Available:

http://www.cgal.org/
[7] “Triangle.” [Online]. Available: http://www.cs.cmu.edu/ quake/trian-

gle.html
[8] P. Fleischmann and S. Selberherr, “Enhanced Advancing Front Delau-

nay Meshing in TCAD,” in Proceedings Simulation of Semiconductor

Processes and Devices, 2002, pp. 99–102.
[9] J. Shewchuk, “What is a Good Linear Element?” in Proceedings of the

International Meshing Roundtable, 2002, pp. 115–126.
[10] “Viennamesh.” [Online]. Available: http://viennamesh.sourceforge.net/
[11] J. Schöberl, “NETGEN An Advancing Front 2D/3D Mesh Generator

Based on Abstract Rules,” Computing and Visualization in Science,
no. 1, pp. 41–52, 1997.

[12] F. Stimpfl, R. Heinzl, P. Schwaha, and S. Selberherr, “A Robust Parallel
Delaunay Mesh Generation Approach Suitable for Three-Dimensional
TCAD,” in Proceedings Simulation of Semiconductor Processes and
Devices, 2008, pp. 265–268.

[13] R. Heinzl and T. Grasser, “Generalized Comprehensive Approach for
Robust Three-Dimensional Mesh Generation for TCAD,” in Proceedings
Simulation of Semiconductor Processes and Devices, 2005, pp. 211–214.

[14] E. B. de l’Isle and P.-L. George, “Optimization of Tetrahedral Meshes,”
Modeling, Mesh Generation, and Adaptive Numerical Methods for

Partial Differential Equations, IMA Volumes in Mathematics and its
Applications, vol. 75, pp. 97–128, 1995.

[15] L. Kinsey, Topology of Surfaces. Springer, 1997, ISBN-10:
0387941029.

- 142 -

