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Abstract— A major concern for III-V nMOSFETs is the
degradation of Ioy due to low density of states and spillover of
the charge from high-mobility I'-valley to low-mobility L-valley
at high sheet charge density. In this paper, we study these I'-L
bandstructure effects for ultrathin-body In,Ga, . Sb nMOSFETSs
with varying stoichiometry using tight-binding and ballistic
transport model.
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I. INTRODUCTION

nMOSFETs based on III-V materials have the highest
mobility/injection velocity (viyj), the major concern however, is
the degradation of device performance due to low density-of-
states (DOS) (low effective mass of carriers) and spillover of
the charge from high-mobility I'- to low-mobility L-valley at
high sheet charge [1-3]. In this paper, we study these I'-L
bandstructure effects for varying stoichiometry of InyGa;.xSb,
which has high mobility for both electrons [4] & holes [5] and
is a promising candidate for future technology nodes.

For performance evaluation of ultrathin-body (UTB)
double-gate devices, the use of bulk effective masses is not
adequate [6]. E-k relations for InyGa; xSb UTB MOSFET (Fig.
1) are calculated using sp°d’s” atomistic tight-binding (TB)
model coupled with Poisson’s equation. The effect of varying
the In % on DOS, electron population among I'-, L-, and X-
valleys is studied systematically. E-k band diagrams for UTB
MOSFET with GaSb and InSb channel are plotted in Fig. 2.
Amongst different valleys of electrons, I'-valley has lower
effective mass, thus higher vy,; but lower DOS. For GaSb and
low In% InxGa;xSb, due to low energy separation between I'-
and L-valleys (Ar.p), L-valley can also be populated, which has
higher DOS but lower vj,;. Increasing In% in the compound
brings up L-valley, reduces the energy for I'-valley, meanwhile
reducing the effective mass of I'-valley. However, high In%
makes it difficult to achieve high electron sheet charge density
(Ns) from I-valley (due to the low DOS). For high drive
current, high vi,; and Ng have to be achieved simultaneously,
which requires engineering of DOS, v, and electrons
population in different valleys. We study the effect of all these
factors (Fig. 3): The band energy (Fig. 5) & difference in DOS
(Fig. 6) among I'- and L-valleys determines the overall
population among different valleys (Fig. 7). Using N (Fig. 8)
and viy; (Fig. 9), ballistic drive current (Fig. 10) is calculated
and compared for varying In %.
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II. METHODOLOGY

TB parameters for ternary InxGa,;xSb are calculated
following virtual-crystal approximation (VCA) incorporating
compositional disorder effect and fitted to bulk band gap of
ternary compound [7-8]. 1D Poisson’s equation perpendicular
to channel direction is coupled with TB Hamiltonian by
Hartree-Fock potential in the gate stack. Dangling bonds at
interface are pacified by hydrogen termination of hybridized
orbitals to eliminate all the states within band gap [9]. A
ballistic transport model is adopted to assess transport of
electrons [10]. Vi, is determined from full band structure with
non-parabolic E-k relationship considered for all valleys.

III. SIMULATION RESULTS

A. Band energy, DOS and Valley Population

Band structures of InxGa; xSb for Tgopy=4nm at Ng of
~3x10"%cm™ for different In %’s are compared in Fig. 4. For
low In % InxGa,.xSb, because of quantum confinement (QC)
effects, Ar is marginal, especially under high Vs and thin
Tgopy, resulting in Fermi level moving into L-valley. Band gap
(Eg) & Ar are shown in Fig. 5: with higher In%, Ar is
increased (from ~0 to ~0.7¢V) to confine more electrons in I'-
valley counteracting the effects of quantization (Fig. 5(a)),
which is more dominant for thin Tgopy (Fig. 5(b)) (Ar.p ~0.5¢V
for Tgopy=7nm, ~0.43eV for Tgopy=3nm, In % 0.5). At higher
Ns (Vg), though E, is lowered due to quantum confinement
stark effect [11] (from ~0.5 to ~0.35eV for Tgopy=4nm, In %
0.5), Arp stays low (Fig. 5(c)) (~0.03eV for Tpopy=4nm,
GaSb). This can be attributed to I'-valley’s curvature getting
blunt (effective mass becomes larger) at high Ng, thus
alleviated quantization effect. Fig. 6 plots the 2-D DOS, I'-
valley has 100x lower DOS compared with L-valley, which is
required to achieve high Ns. In-rich compounds lead to
decrease in DOS at conduction band edge (~10" eV'cm™
GaSb, ~10" eV'cm? InSb) meaning further movement of
Fermi level (read higher V) is necessary to achieve same Ng.
% occupation of electrons in I'-valley is plotted against In %,
Tgopy and Ng in Fig. 7. From Arp for reasonable In %,
adequate percentage of charge can be confined in I'-valley
(~100% at 1x10"'cm™ for In % 0.5) even at high Ng (~60% for
4x10"%cm™, In % 0.5) and thin Tgopy (~50% for Tpopy=3nm,
In % 0.5). Fig. 8 illustrates (a) sheet charge density as a
function of gate voltage and (b) sub-threshold swing
comparison. Two slopes in Ng can be identified which
correspond to I'- and L-valleys respectively. For higher In
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composition, loss in DOS at band edge requires much higher
gate voltage to obtain sheet charge den51ty of reasonable level
for device operation (to get 2x10"“cm™® GaSb ~0.4V, InSb
~1.3V). The change in DOS as well as dielectric constant (from
14.4 GaSb to 16.8 InSb) is also reflected in the degradation of
sub-threshold swing with increasing In % (100mV/dec for
GaSb, 115mV/dec for InSb, Tgopy =4nm). For device
geometry of interest, DOS determined quantum capacitance
has an evident impact on the subthreshold behavior as
subthreshold swing improves for larger Tgopy (95mV/dec for
Tgopy =4nm, 100mV/dec for Tyopy =3nm, GaSb).

B. vinj

Lysa- Vg 18 evaluated by integrating Ng with average velocity
of electrons along transport direction at each k point. Parasitic
resistance is neglected in the calculation. <100> is set as the
transport direction. The average velocity at given gate bias can
be calculated by taking the ratio between the overall current
density and sheet charge density [10]. Under the ballistic
transport model, when Fermi level is below conduction band
edge, the injection velocity stays constant; it increases as Fermi
level moves into conduction band. As shown in Fig. 9, since
electron population is mostly in L-valley, the overall v;,j of
GaSb and Ga-rich InxGa, xSb is low (~2X10 cm/s) at high Ng
as most of the electrons are in L-valley. In-rich compounds
give hlgh Vinj (~1% 10%m/s), because of sharper curvature of I'-
valley in calculated E-k relation, however populatlon of L-
valley leads to the decrease in v, at high Ng (~10"cm™ for In
% 0.5). By engineering with A and DOS for the optimal
driving capability, the overall vy, can maintain high
(~1x10%m/s) with adequate % of charge in I'-valley, when
DOS of L-valley starts to contribute to Ns.

C. Performance Evaluation

In Fig. 8 (a), the filling of L-valley gives raise in Ng.
Without excessive filling of L-valley, average injection
velocity maintains high as shown in Fig. 9. Fig. 10 shows
proper amount of In percentage (~25%) in InxGa, xSb can give
a overall improvement in drive-current by maintaining high viy
with sufficient amount of charge in I'-valley. Further increase
in In composition leads to significant loss in Ng. Drive current
for Iny,5Gag75Sb is 50% higher than silicon, 30% higher than
GaSb (highest DOS) and 120% higher than InSb (highest viy)
at an over-drive voltage of 0.7V. It is shown that varying
stoichiometry of III-V compound material allows careful
engineering of I'-L band structure, to achieve optimal trade-off
between vi,; and DOS.

IV. CONCLUSION

I'-L  bandstructure effects in ultra-thin body III-V
nMOSFETs are studied using tight-binding and ballistic
transport model. It is shown by varying In % in InyGa;.xSb,
most of electrons can be kept in the I'-valley at relevant Ng
values to avoid excessive population of electrons in the L-
valley (GaSb) or significant loss of charge due to low DOS
(InSb), hence achieves the best Ipgar -
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Figure 2. Band diagrams of GaSb and InSb.
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Figure 3. Bandstructure effects by varying In% in InxGa,.xSb and their
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Figure 7. Percentage of electron occupation in I'-valley vs. (a) In
composition for 4nm body thickness and ~ 10"'cm™ & 10'?cm™ sheet charge
density; (b) body thickness for ~1x102cm sheet charge density; (c) sheet
charge density for 4nm body thickness.
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Figure 4. Calculated band structure from TB for InxGa,.xSb at sheet charge
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Figure 10. Saturation current as a function of gate voltage; Gate voltage is
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