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Abstract—We develop a fully analytic compact model of gate-
all-around metal-oxide-semiconductor field-effect transistors in
the ballistic transport. The potential shape in the wire cross
section is approximated by a parabolic function. With the model
potential, electron energy levels are derived analytically and
have an unknown parameter. The electron energy levels are
determined by solving approximately the coupled equation of
charge densities derived from quantum mechanics and elec-
trostatics. We solve the coupled equation with the Aymerich
approximation technique. The unknown parameter and also
electron energy levels can be derived analytically. Device charac-
teristics calculated from the analytic model are compared with
the model with the unknown parameter obtained numerically,
demonstrating an excellent accuracy. We carry out a circuit
simulation with the analytic model of ballistic gate-all-around
metal-oxide-semiconductor field-effect transistors.

Index Terms—GAA-MOSFETs, ballistic transport, analytic
model, perturbation theory, circuit simulation

I. INTRODUCTION

Gate-all-around (GAA) metal-oxide-semiconductor field-
effect transistors (MOSFETs) have been studied extensively
owing to their excellent controllability of the electrostatic po-
tential in the channel and attracted considerable attention as a
next-generation semiconductor device. Several computational
techniques of electron states based on the quantum transport
such as non-equilibrium Green’s function (NEGF) formalism
have been proposed [1], [2], with which the ballistic current of
GAA-MOSFETs is evaluated numerically. However, it is not
practical to introduce such numerical methods into the circuit
simulator such as SPICE due to an immense amount of simula-
tion time. Some compact models of ballistic GAA-MOSFETs
have been already reported [3]–[5], but these models rely
on coupled equations to be evaluated numerically. Although
an analytic circuit model without numerical calculation is
proposed [6], the model contains parameters that have to be
determined numerically in advance. Thus, a fully analytic and
explicit compact model has not yet proposed.

In this work, we propose a fully analytic compact model
for ballistic GAA-MOSFETs with a rectangular wire cross
section, and we demonstrate a circuit simulation using the
model.

II. BALLISTIC CURRENT

We consider GAA-MOSFETs of gate length LG, channel
width tx, channel height ty and gate oxide thickness tox with a
rectangular cross section, as shown in Fig. 1. Figure 2(a) shows
the schematic potential profile along the electron transport
direction. Ballistic current is determined by electrons that have
energy level larger than Emax in the source or drain electrode.
Then, ballistic current is given by [3]:

IDS =
ekBT

πh̄

×
∑
nv

∑
n

ln

{
1 + exp [(EFS − Env,n) /kBT ]

1 + exp [(EFD − Env,n) /kBT ]

}
,
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Fig. 1. Structure of a GAA-MOSFET. (a) Schematic view of a GAA-
MOSFET that has the rectangular wire channel with gate length LG. (b) Wire
cross section of channel width tx, channel height ty and oxide thickness tox.
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Fig. 2. Schematic potential energy distribution in the GAA-MOSFET. (a)
Potential profile along the electron transport direction, where Emax is the top
of the barrier in the channel. Fermi levels at the source and drain are denoted
as EFS and EFD(= EFS−eVDS). (b) Potential profile in the wire cross section
at the barrier top.

where n is quantum number in the wire cross section, and
Env,n represents a confinement energy level at the barrier
top, belonging to the specific valley nv for the channel
material. Ballistic current depends only on energy levels at the
barrier top as shown (1). If an analytic expression of Env,n

is obtained, the fully analytic model of ballistic current is
derived.

III. NUMERICAL COMPACT MODEL

Figure 2(b) shows the schematic potential profile in the wire
cross section at the barrier top. Firstly, the potential shape in
the wire cross section is approximated by a parabolic function
as a model potential:

w(x, y) = ws(∆UG)− 4∆UGf(x, y), (2)

f(x, y) =
x

tx + ty

(
1− x

tx

)
+

y

tx + ty

(
1− y

ty

)
, (3)

where ∆UG determines the potential shape in the wire cross
section in Fig. 2(b), and ws(∆UG) represents electrostatic
potential at the interface between the oxide and the channel.
Electron states in the wire cross section are derived by solv-
ing the Schrödinger equation. With the model potential, the
Schrödinger equation can be separated into x- and y-direction.
The Schrödinger equation along x-axis is then written by:[

− h̄2

2m∗
x

d2

dx2
+ 4e∆UGf(x, 0)

]
ψnv,nx (x)

= Eq
nv,nx

ψnv,nx (x) ,

(4)

where m∗
x is electron effective mass, ψnv,nx represents the

wave functions of electrons, and Eq
nv,nx is a confinement en-

ergy level. The energy level with the superscript q is measured
from −ews. Equation (4) can be solved approximately with the
perturbation theory, and, as a result, the electron energy levels
are obtained as a quadratic function of ∆UG by considering
the second-order term of the perturbation as follows:

Eq
nv,nx

(∆UG) =E
q0
nv,nx

+ (e∆UG)Hnx,nx

+ (e∆UG)
2
∑

n′
x ̸=nx

∣∣Hn′
x,nx

∣∣2
Eq0

nx − Eq0
n′
x

,
(5)

where Hn′
x,nx represents a matrix element [7], which is

obtained analytically. In the summation in (5), we consider

a sufficient number of n′x. When n′x = nx,

Hn′
x,nx =

tx
tx + ty

[
2

3
+

2

(1 + n′x)
2π2

]
, (6)

and when n′x ̸= nx,

Hn′
x,nx = −16

tx(nx + 1)(n′x + 1)

(tx + ty)π2

×

[
1 + (−1)nx+n′

x+2

(nx − n′x)
2(nx + n′x + 2)

]
.

(7)

Electron energy levels Env,nx,ny measured from EFS are given
by:

Env,nx,ny
(∆UG)

= Eq
nv,nx

(∆UG) + Eq
nv,ny

(∆UG)− ews(∆UG),
(8)

where Eq
nv,ny can be derived in the similar procedure men-

tioned above. With (1), (5) and (8), ballistic current is derived
as a function of ∆UG. The quantity ∆UG is determined by
solving the coupled equation of the charge densities derived
from the quantum mechanics, Qq, and electrostatics, Qe, under
each bias condition [7]. The charge density, Qq, is given by:

Qq (∆UG) = −e
√
2m∗

zkBT

πh̄

∑
nv

∑
nx

∑
ny

×
[
F− 1

2

(−Env,nx,ny (∆UG)

kBT

)
+ F− 1

2

(−eVDS − Env,nx,ny (∆UG)

kBT

)]
,

(9)

where F−1/2(u) represents Fermi-integral referred in [5]. On
the other hand, the charge density, Qe, is derived from the
Poisson equation and the model potential:

Qe(∆UG) = −8εch∆UG, (10)

where εch is a permittivity associated with the channel ma-
terial. The coupled equation Qq = Qe requires a surface
potential ws through (8). The surface potential is derived from
the boundary condition at the interface between oxide and the
channel as follows:

tx + ty
2

V ′
GS =

∫ tx/2

0

dx [w (x, 0) + Vox (x)]

+

∫ ty/2

0

dy [w (0, y) + Vox (y)],

(11)

V ′
GS = VGS − ϕGC + wFB, (12)

where ϕGC is difference of the workfunction between gate and
channel materials, and wFB represents the conduction band
edge measured from EFS/(−e) at the flat-band condition,
which is determined by workfunction and electron affinity of
the channel material. The voltage drop across the gate oxide
Vox is derived, which satisfies the continuity of the electric
displacement at the interface between the oxide and channel.
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Fig. 3. Ballistic current characteristics calculated from numerical compact
model (solid line) and NEGF simulation (dashed line) as a function of VGS.
We define VTH as the gate voltage at which the lowest energy level reaches
EFS. A parameter n∆1 represents the number of energy levels considered in
(1) and (9) for the numerical compact model, and n∆2 represents the number
of energy levels considered in the NEGF simulation.

From (11), the surface potential ws is derived as a function of
∆UG as follows:

ws (∆UG) = V ′
GS +∆UGṼox, (13)

Ṽox =
2

3

t2x + t2y
(tx + ty)2

− 4
εchtox

εox(tx + ty)
, (14)

where εox is a permittivity associated with the oxide material.
The coupled equation with (13) cannot be solved explicitly,
so ∆UG must be determined by either approximately or
numerically. The ballistic current is described by the Landauer
formula [3] with the obtained energy levels (8) as a function
of ∆UG, and the ballistic current can be evaluated with the
obtained ∆UG. In this calculation, we assumed that the channel
and oxide materials are intrinsic Si and SiO2, respectively,
and the transverse and longitudinal effective masses are fixed
at mt = 0.19m0 and ml = 0.91m0 in a (100)-oriented Si
channel. Figure 3 shows a comparison of the ballistic current
calculated from the compact model with ∆UG determined
numerically with NEGF simulator [2], demonstrating a rea-
sonable accuracy.

IV. ANALYTIC AND EXPLICIT COMPACT MODEL

Characteristics of GAA-MOSFETs can be calculated with-
out any numerical calculation if gate and drain voltage de-
pendence of ∆UG is obtained analytically. We take two
assumptions to solve the coupled equation mentioned above

'

GS
1 1 Vα β γ − + +
 0

{ }'

GS
1 1 ln 1 exp Vα β γ  − + + +  

Subthreshold region Strong inversion region

GU∆

G
U∆

(a)

(b)

VGS

VTH

Fig. 4. Analytic expressions of ∆UG. Parameters α, β and γ are determined
from structural parameters. (a) Expressions of ∆UG in the subthreshold and
the strong inversion region. (b) An unified expression of ∆UG.

to derive an analytic expression of ∆UG. Firstly, electrons
that occupy the lowest energy level are dominant for ballistic
current. Secondly, the drain voltage VDS is sufficiently large,
that is, eVDS ≫ kBT , and the second term in (9) can be
ignored. In the subthreshold region, electron density in the
wire cross section is sufficiently small. Potential profile in the
wire cross section becomes almost the flat-band. Thus, ∆UG
is approximated from (10) as follows:

∆UG ≈ 0. (15)

On the other hand, in the strong inversion region, Qq is
described by the Fermi-integral which is dealt analytically
by an approximation technique [8]. With the approximation
method, the Fermi-integral in the strong inversion region is
written by a polynominal function.

Fn(u) =
un+1

n+ 1
, u≫ 1 (16)

With this approximation, the coupled equation Qq = Qe in
the inversion region is rewritten as:

−8εch∆UG = −e
√
2m∗

zkBT

πh̄
gv

×

[
−e(V ′

GS −∆UGṼox)− Eq
1,0,0(∆UG)

kBT

] 1
2

,

(17)

where gv represents the valley degeneracy for the lowest
energy level. We can solve (17) analytically for ∆UG,

∆UG =
−bR

2(aL + aR)

×

{
1−

√
1 +

4 (−eV ′
GS/kBT + cR) (aL + aR)

b2R

}
,

(18)

where parameters aL, aR, bR, and cR are shown in Table. I.
Finally, two asymptotic expressions (15) and (18) are con-
nected smoothly as shown in Fig. 4(a) and 4(b). Thus, a fully

TABLE I
PARAMETERS USED IN (18).

aL =
{

8εchπh̄
egv

}2 1
2m∗

zkBT
, aR = e2

kBT

( ∑
n′
x ̸=nx

|H0,n′
x
|2

E
q0
1,0x

−E
q0
1,n′

x

+
∑

n′
y ̸=ny

|H0,n′
y
|2

E
q0
1,0y

−E
q0
1,n′

y

)

bR = −e
kBT

(H0,0 − Ṽox), cR = −
E

q0
1,0x

+E
q0
1,0y

kBT
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4

∆UG =
−bR

2(aL + aR)

{
1−

√
1 + ln

[
1 + exp

[
4(−eV ′

GS/kBT + cR)(aL + aR)

b2R

]]}
. (19)
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Fig. 5. (a) A parameter ∆UG calculated from numerical compact model
(solid line) and fully analytic model (open circle) as a function of VGS. (b)
The lowest energy levels calculated from numerical compact model (solid
line) and fully analytic model (open circle) as a function of VGS, measured
from EFS, and ns represents the number of energy levels considered in (1)
for the fully analytic model.

analytic expression of ∆UG is obtained, which depends only
on structural and bias parameters in (19). The ballistic current
depends only on the electron energy levels which is derived in
terms of ∆UG. Therefore, a fully analytic and explicit compact
model of the drain current for ballistic GAA-MOSFETs is
obtained. Figure 5(a) shows the comparison of ∆UG as a
function of VGS with (15), (18), (19) and the compact model
with the numerically derived ∆UG referred in the previous
section. As shown in Fig. 5(a), the fully analytic model (19)
approach 0 in the subthreshold region and (18) in the strong
inversion region. The lowest energy level calculated from the
full analytic model demonstrates an excellent accuracy, which
is depicted in Fig. 5(b). Figure 6 shows that the full analytic
model for the ballistic current also demonstrates the equivalent
accuracy.

V. CIRCUIT SIMULATION

An inverter circuit shown in Fig. 7(a) was simulated with
the fully analytic model. We brought in the analytic expression
of the ballistic current to HSPICE as a Verilog-A script. Figure
7(b) shows the output characteristic of the inverter circuit.

VI. CONCLUSION

An analytic and explicit compact model of the GAA-
MOSFETs with rectangular cross section has been proposed.
It demonstrates a high precision equivalent to the numerical
compact model. In addition, we incorporated this fully analytic
model to the circuit simulation as a Verilog-A script, and
the circuit simulation of the inverter circuit was successfully
demonstrated.
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Fig. 6. Current characteristics calculated from numerical compact model
(solid line) and fully analytic model (open circle). (a) Gate voltage dependence
of the ballistic current for VDS = 0.8 V. (b) Drain voltage dependence of the
ballistic current for VGS − VTH = 0.75 V and 0.25 V.
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Fig. 7. (a) Schematic diagram of the inverter circuit. The fully analytic model
of a GAA-MOSFET is introduced to HSPICE as a Verilog-A script. (b) The
output voltage Vout of the inverter circuit simulated by a HSPICE simulator.
The horizontal axis represents the input voltage Vin. The inset shows that
the ballistic current of the n-type GAA-MOSFET calculated from HSPICE
demonstrates a good accuracy with the fully analytic model.
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