11-5

Low-dimensional Quantum Transport Models in
Atomistic Device Simulations

Gennady Mil’nikov!?, Nobuya Mori'? and Yoshinari Kamakura'?
'Department of Electrical, Electronic and Information Engineering
Osaka University, Suita, Japan
2CREST, JST, Chiyoda, Tokyo 102-0075, Japan
Email: {gena|mori|kamakura}@si.eei.eng.osaka-u.jp

Abstract—The paper presents a method for atomistic quan-
tum transport simulations in nanowire (NW) MOSFETs. The
original tight-binding (TBM) Hamiltonian of the nanostructure
is replaced with an approximate model which reproduces the
transport properties at atomistic level. Small size of the equivalent
model (EM) makes the atomistic transport simulation computa-
tionally cheap and allows the inelastic scattering effects to be
incorporated easily. The method is applied to various p-SiNW
and n-SiNW MOSFETs.

I. INTRODUCTION

Rapid progress in semiconductor device technologies
has led to development of a variety of novel devices
such as double-gate transistors [1], carbon nanotubes [2]
and gate-all-around (GAA) metal-oxide-semiconductor field-
effect-transistors (MOSFET) [3]-[5]. Experimental studies of
Ge/Si nanowire heterostructures have shown excellent gate
control, high drain current and reduced sensitivity to temper-
ature [6], [7]. This technological progress has stimulated a
growing interest to both experimental and theoretical studies
of quasi-one-dimensional quantum transport in such devices.
In nanoscale regime, a device can no longer be described as
a continuous system and the theoretical modeling of quan-
tum transport requires atomistic quantum models taking into
account the lattice orientation and non-elastic scattering [8].
The nearest-neighbor tight-binding models with various levels
of approximations are commonly used for this purpose [9].
The non-equilibrium Green’s function technique with the tight-
binding type of Hamiltonian provides a suitable technique
to perform transport simulations with atomistic resolution
including possible inelastic effects [9], [10]. However, com-
pared to the effective mass models, large size of the tight-
binding Hamiltonian makes the atomistic transport simulations
is computationally very demanding.

In the present study, we develop a general scheme to sub-
stitute the original tight-binding Hamiltonian of the nanowire
device by a low-dimensional quantum transport model with
equivalent transport characteristics. We start with a one-
particle quantum state in an ideal nanowire and construct a
new atomistic basis which reproduces all the scattering states
and the band structure in a narrow (~ 0.5eV) energy window
at the bottom of the allowed band of the wire. This basis
transformation is further used to obtain a low-dimensional
open device Hamiltonian in the basis representation. The com-
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putational burden is greatly reduced and the atomistic transport
simulations can be performed on ordinary PC computer. As
a test, we construct the equivalent transport models for a
number of p-SiNW and n-SiNW MOSFETs with different
diameter and lattice orientation of the Si channel. The ballistic
transport simulations show better than 1 % level of numerical
accuracy in computed drain current. The utility of the present
approached is further demonstrated by calculating electron-
phonon scattering in p-Si [100] NW MOSFET in scope of
non-equilibrium Green’s function formalism (NEGF).

II. ATOMISTIC BASIS IN QUANTUM WIRES

The basis expansion method for quasi-one-dimensional
transport is well known in the effective mass model: a current
carrying state of the NW is represented by a small number of
subband eigen-functions obtained from the two-dimensional
quantization in the wire cross-section. Such a mode-space
approach allows the actual three dimensional transport prob-
lem to be reduced to a much easy task of computing a
few one-dimensional wave functions. The required number of
channels depends of the energy scale and the band structure,
i.e. the effective mass and diameter of the NW. The subbands
representation can be also thought as an expansion in terms
of scattering states of the corresponding ideal wire, since the
dependence of these states on the energy and the transport
coordinate in the effective mass model is trivial. In the present
work we make an attempt to generalize this picture to atomistic
NWs with realistic band structure.

We consider an infinite wire with one-particle tri-diagonal
block Hamiltonian

Hy, =Ho+Vy, Hypyr = H,

n+ln

=W ey

where n numerates unit structures, Hy is the Hamiltonian of
isolated unit structure, W is the transfer Hamiltonian between
the nearest unit-structures, and V, represents the potential
term. The definition of the unit structure in the reference ideal
wire and the original size Ntgy of the blocks (number of
atomistic orbitals) depend on the lattice orientation and the
tight-binding method. The elements n = 1,2,..., N are taken
as the device coupled to two leads V,.; = V; and V,.y = Viy.
We consider a non-equilibrium one-electron state as a result
of scattering effects between quantum states in the ideal
NW. Under normal conditions, the transport characteristics are
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dominated by mobile carries near the band gap of the NW. The
scattering solutions are calculated as the Bloch eigen-states
(11]

|W*Z,' + Hy+ WZ, - |, =0 )

in open channels with |Z,| = 1. These states occur in M,
pairs of complex conjugated functions, where M,, is the
number of subbands at the reference energy €. Thus, we can
construct 2M,, real basis functions which exactly reproduce
the quantum transport though the ideal wire at this energy. The
energy dependence of the Bloch scattering states is expected to
be smooth enough in order to be consistent with the realistic
band structure. Solving the Bloch equation at few & within
the energy interval of interest and putting together all the
scattering solutions, we obtain a moderate basis which can
be used in simulations instead of the complete set of TBM
atomic orbitals. In practice we use {Ry, ()}, {Ix,(e)} at all
reference energies and construct a real-valued orthonormal
basis set {®,} : (®,|D,) = 6,,, where the scalar product is
understood as a sum over the atomic orbitals in the unit-
structure. A one-particle state of the device is calculated in
the form of the basis expansion

Np
U= ) Db, 3)
v=1
where W(n) is the vector of Nygv quantum amplitudes in
the n-th unit-structure, N, is the basis size, and the “wave
functions” &,,, are to be found from the transport simulations
with the low-dimensional model Hamiltonian

hvu(n) ={(D,|Ho + Vn|q)/4>; Wyy = <q)v|W|(D/4> 4

The outlined procedure is straightforward and fairly simple.
Test calculations confirm that a sequence of Bloch eigen
states also reproduce the scattering solutions at intermediate
energies. However, the band structures for two wires Eqgs. (1)
and (4) are generally not equivalent in the energy interval of
interest. The reduced model is found to contain unphysical
branches, which in transport simulations would cause erro-
neous states of the device. In ballistic regime, the contribution
from this states can be easily identified and eliminated [12].
Here we present a more general equivalent transport model
(EM) without unphysical effects.

III. VARIATIONAL CONSTRUCTION OF THE EM

The unphysical branches in the band structure of the reduced
scattering model should be expected. Unlike the effective mass
model, the tight-binding Hamiltonian is not bounded by the
band edge and there is no energy variational principle to guar-
antee the correct spectrum in this energy interval. Adding more
states to the basis set improves the accuracy of the physical
solutions, but also leads to new branches which could appear at
any energy including the band edge area. In order to construct
a model with correct transport characteristics, we develop a
variational procedure which guarantees correct choice of the
new basis states. The mathematical and numerical details of
our variational approach will be published elsewhere. Here we

just present the summary of the method and show some results
as an illustration.

For a given basis {®,}, we introduce a variational func-
tional N(ey,&r,k,[¥]) which has a meaning of the number
of branches at wave number k within energy interval [g1; &;].
Here ¥ is a new basis function from the orthogonal comple-
ment of {®,}. At any k, the branches are calculated as the
eigenvalues of the matrix representation H(k) of the Bloch
operator with respect to the basis {®,} ® ¥. The branch
energies &,(k) thus become a functional of W¥. If {y,} is the
basis for an appropriate subspace of the complement, one
can use the expansion ¥ = }, C,y, and obtain the function
N(e1,&2,k,{C,}) which can be used in numeric.

We require N(g1, &2, k, [V]) to be 1) analytical differentiable
functional; 2) easily computed together with its lowest deriva-
tives and 3) reach local minimum at ¥ with less number of
states in [&]; &;] compared to {®,} model. Then, the variational
functional for the whole band structure can be taken as a sum
of contributions from several wave numbers k;

FI¥] =" fiN(e1, e, ki, [¥]) )

with the weighting factors f; > 0. To complete the construc-
tion, we need to specify N(ey, &2, ki, [P]) and {y,}. The latter
are taken as nonzero eigenstates of the singular operators
(1=Pe)W*PuW(1 —Pg) and (1 — Po)HoPoHo(1 — Pg), where
Py = 3, |®,){®D,]| is the projector to the initial functional space
of the model. This choice simply corresponds to the orbitals
with the strongest coupling to the initial {®,} in spirit of the
perturbation theory. Finally, the variational functional at fixed
k is found in the form

N(e1, &2,k [¥]) =(TrG(z,k) (z = (&1 + 2)/2)).,  (6)

where G(z,k) is the resolvent of H(k) and (...), stands for
the arithmetical mean for complex valued z located at circular
contour centered at (g; + &,)/2 with radius (g, — &1)/2. This
completes our construction and Egs. (5) and (6) can be shown
to satisfied the above criteria for the variational functional.
Further details will be presented elsewhere.

IV. NUMERICAL ILLUSTRATION

Our procedure is summarized as follows. (1) Calculate
enough scattering state to guarantee that the physical branches
of the NW band structure are well reproduced within energy
interval of interest. (2) Minimize the functional Eq. (5) on
the appropriate small dimensional subspace of the orthogonal
complement. This gives a new basis function ¥ such that
the corresponding N, + 1 dimensional model has one less
unphysical subband in the band structure. (3) Repeat item
(2) until there is no more unphysical branches. (4) Express
the original creation/annihilation operators at the atomistic
orbitals in terms of that for the basis functions and obtain
the equivalent transport model Hamiltonian. At this stage, one
can incorporate into the EM any source of scattering including
inelastic effects.
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Fig. 1. Valence band structure of [100] SINW with rectangular cross section
2.2 x2.2nm. Black lines show the exact band structure and red marks are for
three EMs with 17, 46 and 53 basis functions.
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Fig. 2. IV characteristics of p-SiNW calculated in two EMs from Fig. 1 and

the original sp>s* TBM. The low part of the figure demonstrates numerical
accuracy of the EM data.

As a test, we performed atomistic transport simulations in
n-SiNW and p-SiNW GAA devices of 30 nm length at room
temperatures with dopant concentration in the source/drain
regions of 10?° cm™3 for n-Si and 2 x 10'° cm=3 for p-Si. We
use the sp3d’s* and sp’s* tight-binding models for n-SiNW
and p-SiNW respectively. Fig. 1 shows an example of the
band structure in three EMs for [100] p-SiNW with rectangular
cross section 2.2 X 2.2 nm. The larger EM provides wider part
of the band structure at the bottom of the valence band. Thus,
the numerical accuracy can be estimated solely from the EMs
with no further reference to the original TBM. Fig. 2 presents
the computed IV characteristics at applied bias Vsp = 0.1 V.
The results from 17-dimensional and 46-dimensional EMs
from Fig. 1 are compared with the exact TBM calculation
and ~ 1% level of accuracy is confirmed in both cases.
In fact, the difference between three IV-curves in this figure
is within the numerical accuracy of the self-consistent drain
current calculations. In this sense, the results are identical.
We conclude that the EMs with the band structure within
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Fig. 3. Transmission functions of p-Si NW at various gate voltages in Fig. 2.
17D EM (red marks) are compared with the exact TBM (black lines)

~ 0.2 -0.3eV interval near the band edge can be safely used
in the atomistic device simulations. Figs. 3 and 4 show the
computed transmission function at various gate voltages and
an example of the charge distribution at 32 Si atoms in the NW
cross section. Excellent agreement with the exact data is found
even for the smallest 17D EM. The transport simulations in
this case are very cheap and it take seconds to compute the
(ballistic) device state at one iteration. The calculations were
repeated taking into account the electron-phonon scattering
at the level of self-consistent Born approximation in NEGF.
In this case, accurate calculation of the phonon absorption
subbands require larger band structure of the EM, especially
in the off current regime. The results of this study will be
published elsewhere.

The same approach was used to construct the EMs from
the primary sp’d’s* TBM basis for quantum transport in
[100],[110] and [111] n-SiNW MOSFETs with diameters
ranging from 2nm to 4 nm. Fig. 5 shows an example of the
conduction band structure in 4X4nm [111] n-SiINW with 7780
original atomistic orbitals in a single unit-structure. Again, the
cheapest 36-dimensional model is found to provide transport
characteristic with 1 % accuracy. In fact, even a smaller EM
can be used with only the lowest six nearly degenerate
subbands in Fig. 5 reproduced correctly. The accuracy of
the calculations drops down to about 10 percents in this
case. Fig. 6 shows the I'V-characteristics for various n-SiNW
MOSFETs with different diameters and lattice orientation. In
all cases, ~ 1 % level of accuracy is confirmed. In particular,
we estimated the subthreshold swing 67, 75, 84 for [100] NWs,
66, 75, 88 for [111] NWs and 72, 77, 87 for [110] NWs (all
in mV/dec) depending on the wire diameter.

V. SUMMARY

We developed a low dimensional atomistic model of quan-
tum transport in nanowire MOSFETs. Our method effectively
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Fig. 4. Example of the mobile charge distribution within one atomic layer in [100] p-SiNW. Red points indicate actual position of 32 Si atoms in (yz)-plane
orthogonal to the transport direction. The right panel shows absolute error in the EM data.
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Fig. 5. Conduction band structure of [111] SiNW with rectangular cross
section 4x4 nm. Black lines show the exact band structure and red marks are
for three EMs with 36, 46 and 82 basis functions.

sorts out a huge number of atomistic orbitals in the device
area to extract a small portion of quantum states responsible
for the device behaviour. Small size of the equivalent transport
model greatly facilitates the atomistic device simulations and
makes realistic modeling of inelastic scattering processes in
NW MOSFETs also feasible.
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