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Abstract—This paper describes numerical methods for a four-
moments quantum energy transport(QET) model, which is 
derived by using a diffusion scaling in the quantum 
hydrodynamic model. Space discretization is performed by a new 
set of unknown variables. Numerical stability and convergence 
are obtained by developing an iterative solution method with a 
relaxation method. Numerical results in a scaled MOSFET are 
discussed. The QET model allows simulations of quantum 
confinement transport, and nonlocal and hot-carrier effects in 
scaled MOSFETs. 

Keywords; simulation, quantum energy transport model,  
MOSFET. 

I. INTRODUCTION  
The performance of scaled MOSFETs relies on the quantum 

confinement transport, and nonlocal and hot-carrier effects in 
the short channels. Quantum energy transport(QET) models are 
required to understand such physical phenomena in scaled 
MOSFETs. The full QET model has been derived from the 
collisional Wigner-Boltzmann equations using the entropy 
minimization principle [1]. Numerical simulations using this 
model, however, have not been performed. Simplified models 
have been proposed as the energy transport extension of the 
QDD model with Fourier law closure and numerically 
investigated [2], [3]. 

  In this work, we develop numerical methods for a QET 
model derived from a quantum hydrodynamic model. To 
overcome the difficulties associated with the Fourier law 
closure, we derive a four moments QET model. The numerical 
stability is achieved by discretization and an iterative solution 
method in terms of a new set of variables. Numerical results in  
a scaled MOSFET are discussed. 

II. QUANTUM ENERGY TRANSPORT MODEL 
The quantum hydrodynamic model has been derived from a 

Chapman-Enskog expansion of the Wigner-Boltzmann 
equation adding a collision term [4], [5]. For classical 
hydrodynamic simulations, the closure relation based on the 
four-moments of the Boltzmann equation has been proposed 
[6], and the four-moments ET models are discussed for 
simulations of thin body MOSFETs [7], [8].  In this work, a 
four-moments QET model is derived by using a diffusion 

scaling in the four moment equations with quantum corrections 
to the stress tensor 

ijP  [4] and the energy density W [9], which 
are given by 
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We further assume that the fourth order tensor R  is specified 
by the classical form as  
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where I  is the identity tensor. The quantum potential 
nnbnn /2 2∇=γ  is derived from )( 2O corrections to the 

stress tensor 
ijP  [4].  The external potentials in the current 

density and the forcing term of carrier heating are corrected by 
using the quantum potential. Moreover, the quantum 
corrections to the energy density W are included in the drift 
contributions to the energy flux nS  and neglected in the 
diffusive contributions. 

We consider only the case of electrons. A four-moments 
QET model is derived as follows: 
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where 2/)( nnnu ϕγϕ −+=  and )/( nnn kTquv = . ϕ , nϕ , n , 
p , and nT are the electrostatic potential, chemical potential, 

electron and hole densities, and electron temperature, 
respectively. nρ  is the root-density of electrons. ε , q , and 

k are the permittivity of semiconductor, electronic charge, and 
Boltzmann’s constant. C  and LT  are the ionized impurity 
density and the lattice temperature, respectively. 

)12/(2 qmbn = , where m and are an effective mass and 
Planck’s constant. ετ  is the carrier energy relaxation time. 

nμ and sμ are mobility models. For a temperature dependent 
mobility model, we apply simplified Hänsch’s mobility 
model[7], 
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where 0μ  and sv are low-field mobility and saturation velocity, 
respectively.  

By employing an exponential transformation of variable 
))/(exp( nnin kTqunn ==ρ

 
, the quantum potential equation 

is replaced by (7) in terms of the variable nv  [10]. If the 
variable nv  is uniformly bounded, the electron density is 
maintained to be positive. As mentioned below, this approach 
provides a numerical advantage for developing the iterative 
solution method of the QET model as well as the quantum drift 
diffusion (QDD) model [10].  

III. DISCRETIZATION AND ITERATIVE SOLUTION METHOD 
Space discretization of the QET model is performed by a 

new set of unknown variables ),,,( nn Tnvϕ . By employing 
new variable ξ , the current density nJ  and the energy flow 

nS can be written in a general form, similar as in the classical 
ET model [8], [11]. The general flux is introduced as 

)),(( n
nkT
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where C  is constant. nqC μ= in nJ  and SqC μ)2/5(−=  in nS . 
The variable qnkTn /=ξ  in nJ  and 2)/( qkTn n=ξ  in nS . 
Using the variable )())/(( nnkTqg γϕ +∇= ∫ , (11) can be 
rewritten in the following form as 

).( ξgg eCe −∇              (12) 

Using (12), we can apply Scharfetter-Gummel type schemes to 
(5) and (8) [8], respectively. Space discretization of (7) is 
performed following our previous work [10], [12] to achieve 
Scharfetter-Gummel type schemes. 

An iterative solution method, which consists of the inner and 
outer iteration loops, is developed, as shown in Fig.1. It is a 
critical issue to solve for the unknown nρ  the quantum 
potential equation 

.02 2 =+∇− nnnnb ργρ        (13) 

In this case, the iterative solution method requires an additional 
iteration loop to maintain positive solutions for the root-density 
of electrons in the inner iteration loop [13]. Hence, in the inner 
iteration loop, (13) is replaced by (7). The algorithm using the 
variable 

nv  in (7) ensures the positivity of the root-density of 
electrons without introducing damping parameters [10]. We 
can enhance the robustness of the iterative solution method by 
introducing a relaxation method with a parameter 10, << αα , 
in the outer iteration loop: 
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The convergence behavior of electron temperature is shown in 
Fig.2 as a function of the relaxation parameter. It is clear that 
the numerical stability is obtained by the relaxation method. 

IV. NUMERICAL RESULTS 
The numerical results are calculated in a 35nm MOSFET 

having thin gate oxide thickness of 1.5nm and uniform channel 
doping of 318100.2 −× cm . In Fig.3 (a) and (b), we compare the 
electron density distributions calculated by QDD, QET and 
classical ET models. The device was biased with Vg=0.8V and 
Vd=0.8V. The simulated density distributions are plotted at 
different positions of the channel. Fig.3 (a) shows the electron 
density distributions at the source end of the channel. The 
electron density distributions calculated from the QET and 
QDD models are almost identical at the source end of the 
channel. Carrier heating due to the short channel effects results 
in the spread of electrons towards the bulk in simulations using 
the QET and ET models. The electron density distributions at 
the drain end of the channel are shown in Fig.3 (b). The results 
clearly indicate that the quantum confinement effect is reduced 
by the enhanced diffusion towards the bulk due to the high 
electron temperature near the drain. The QET model allows 
simulations of quantum confinement transport with hot-carrier 
effects in MOSFETs. 

Fig.4 (a), (b), and (c) shows lateral profiles of electron 
temperature calculated by the QET and ET models in weak 
inversion and strong inversion regions, and the medium 
inversion region between the two. The simulations are done at 
the same drain voltage of 0.8V. As shown in Fig.4 (a), the 
results in the weak inversion region are almost identical 
between two models. In Fig.4 (b), we show the results 
calculated by the QET model at Vg=0.8V and the ET model at 
Vg=0.8V and Vg=0.5V. Fig.4 (c) compares the results in the 
strong inversion region. At the same gate voltage, the QET 
model exhibits sharper distributions of electron temperature at 
the lateral direction, when compared to those calculated by the 
ET model. These differences are caused by the threshold 
voltage shift due to the quantum confinement in the channel. In 
Fig.5, we present the x-component of the current density. The 
results show that the magnitude of the current density 
calculated by the QET model at Vg=0.8V corresponds to that 
calculated by the ET model at Vg=0.5V in the medium 
inversion region. Therefore, the shape of electron temperature 
distributions is close to that obtained by the ET model at 
Vg=0.5V, as shown in Fig.4 (b). We observe from Fig.4 (c) a 
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larger discrepancy of temperature distributions in the strong 
inversion region due to the strong quantum confinement. 

V. CONCLUSION 
A four-moments QET model has been derived by using a 

diffusion scaling in the quantum hydrodynamic model. 
Numerical methods for the QET model in terms of a new set 
of variables have been developed. We can enhance the 
robustness of the iterative solution method by introducing a 
relaxation method. The QET model allows simulations of 
quantum confinement transport with hot-carrier effects in 
scaled MOSFETs. The results reveal the difference of electron 
temperature distributions between the QET and ET models 
due to the quantum confinement effects. 
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Fig.1 An iterative solution method with a relaxation algorithm 
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Fig.2 Relative error of electron temperature vs. number of 
iterations at different relaxation parameters. 
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Fig.3 Electron density distributions perpendicular to the 
interface for a 35nm MOSFET, (a) at the source end of the 
channel, and (b) at the drain end of the channel. Vg=0.8V, 
Vd=0.8V, and ps1.0=ετ . 
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              (c) 
 
Fig.4 Lateral profiles of electron temperature distributions 
calculated by QET(solid line) and ET(dotted line) models at 
the same drain bias of Vd=0.8V. (a) QET model at Vg=0.3V, 
ET model at Vg=0.3V and Vg=0.2V. (b) QET model at 
Vg=0.8V, ET model at Vg=0.8V and Vg=0.5V. (c) QET 
model at Vg=1.2V ,  ET model at Vg=1.2V and Vg=0.6V. 
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Fig.5 x-Component of current densities perpendicular to the 
interface for a 35nm MOSFET. QET model at Vg=0.8V, ET 
model at Vg=0.8V and Vg=0.5V 
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