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Abstract – A comprehensive statistical investigation of the 
increase in resistance associated with charge trapping in 
‘atomistic’ simulations is presented considering a wide 
range of doping densities and mesh spacing for both 
classical and quantum formalisms. A modified mobility 
model for the ‘atomistic’ simulations is proposed to 
suppress the error related to the fictitious charge 
trapping.  
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I.  INTRODUCTION 
Resolving individual charges within classical Drift 
Diffusion [1] using a fine mesh is problematic [2-3]. 
Due to the use of Boltzmann or Fermi-Dirac statistics in 
numerical simulation the electron concentration follows 
the electrostatic potential, obtained from the solution of 
the Poisson equation. As a result a significant amount of 
mobile charge can become trapped in sharply resolved 
Coulomb potential wells created by discrete dopant 
charges. Such trapping is not physical as, in quantum 
mechanical terms, confinement keeps the ground 
electron state high in the well. Additionally the quantity 
of trapped charge is strongly sensitive to the mesh size 
in classical drift-diffusion simulations [4]. One possible 
solution is to use a quantum mechanically consistent 
treatment of the electron concentration via the Density 
Gradient (DG) approximation [4]. A previous 
simulation study of a highly doped (ND=1020 cm-3) 
resistor [4] has shown that the DG approach removes 
the mesh-dependent resistance problem, but a residual 
not negligible error remains in the evaluation of the 
average ‘atomistic’ resistance when compared to the 
calculated analytical value.  
  In this work we present a comprehensive statistical 
investigation of the increase in resistance associated 
with charge trapping in ‘atomistic’ simulations, 
considering a wide range of doping densities 
(ND=1017-1021 cm-3) and mesh spacing (0.5-2nm) for 
both classical and DG formalisms. 
 
 

II.  SIMULATION METHODOLOGY 
In order to study the charge trapping phenomena 
associated with ‘atomistic’ simulation, a silicon resistor 
with n-type doping and dimensions 50 × 50 × 50 nm was 
chosen as test structure and an ensemble of a thousand 
microscopically different devices were simulated for 
each doping density and each mesh spacing using the 
GSS† ‘atomistic’ simulator GARAND. A Cloud-in-Cell 
(CIC) [5] method is adopted for the charge assignment 
in the simulations. The continuously doped case is taken 
as the reference as it matches the  

 
Figure 1. 3D plot of the effective potential in a 50x50x50nm silicon resistor 
doped at1x1019 cm-3. Note that the region with the discrete doping is long 
30nm. 

analytical conductivity of the resistor. In section III it is 
demonstrated that the observed increase in resistance within 
‘atomistic’ simulations represents a simulation artifact and 
cannot be ascribed to any physical conduction mechanism. 
  The electron mobility in ‘atomistic’ simulations is 
calculated, via the Masetti model [6], using the continuous 
doping profile. Hence, for each doping density, all atomistic 
devices use the same calculated mobility. Additionally, 
when specified, an electric field dependent mobility is also 
adopted in simulations. In this case the mobility depends on 
the local electric field generated by each discrete dopant. As 
shown in section III, this represents an additional source of 
error and variability for the atomistic resistance. It should be 
noted (Fig. 1) that the atomistic region length is 30 nm. A 
continuously doped region is interposed between the 
contacts and the discrete zone to avoid any influence related 
to boundary conditions.  
  The potential distribution for one of the simulations is 
shown in Fig. 1 for a doping value of ND=1019 cm-3. 
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Figure 2. Comparison of the IV characteristics produced from classical and 
DG simulation on ensembles of 1000 atomistically different devices with 
mesh spacings of 0.5, 1 and 2nm. 

   
III.  RESULTS AND DISCUSSION 

Fig. 2 depicts the average I-V characteristics obtained from 
classical and DG simulations of the resistor, for a doping 
value of ND=1019 cm-3 and a mesh spacing of 0.5nm, 1 nm 
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and 2nm. As can be seen from Fig. 2 the resistance of 
the device increases dramatically in the ‘atomistic’ 
classical cases, showing a strong mesh dependence. DG 
results are mesh-independent and closer to the analytical 
result, but a discrepancy remains between the 
‘atomistic’ average resistance and the analytical 
resistance. This difference is related to the electron 
concentration profile through the device (Fig. 3). It 
should be noted that the integral of charge density over 
the device volume is the same for both the average 
‘atomistic’ resistor and the continuously doped resistor. 
Fig. 3 shows that the DG approach smoothes the 
electron density profile with respect to the classical 
approach, reducing the effect of charge trapping. 

 

0 5 10 15 20 25 30 35 40 45 50
Distance [nm]

1018

1019

1020

El
ec

tro
n 

co
nc

en
tra

tio
n 

[c
m

-3
] DG

Classical
Continuous

 
Figure 3. 1D plot of the electron concentration through a 50x50x50nm 
silicon resistor doped at 1x1019 cm-3, comparing the profile obtained 
from classical ad DG simulations. 

Fig. 4 shows the relative error between the average 
‘atomistic’ resistance and the analytical resistance for 
different doping densities and different mesh spacing 
values for both classical and DG simulations. As before 
it can be seen that classical simulations have a larger 
error than DG simulations. It can also be seen that all 
simulations exhibit a similar shape. Starting at low 
doping densities the error increases until it reaches a 
maximum of around 1019cm-3 and then decreases for 
higher doping densities.  
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Figure 4. The relative error of the resistance calculated in a 
50x50x50nm silicon resistor using both classical and DG formalisms 
for various mesh spacing and doping densities. 

This shape can be explained if we first consider high 
doping densities. Fig. 5 shows that the height of the 
potential peaks causing electron trapping decreases 
when the doping concentration increases. This can be 
due to the reduction of the Debye length (λD), causing 
an increase in the electrostatic screening, or the 
reduction of the average distance between dopants 

(davg), causing a smoothing of the interactive potential wells. 
The inset in Fig. 5 shows that λD decreases more quickly 
than davg when the doping concentration increases, 
suggesting that the electrostatic screening is the major factor 
responsible for the reduction in peak height. This is 
confirmed in Fig.6 where the 1D electrostatic potential 
along a resistor is shown when a single discrete dopant is 
placed at the center of the device with varying continuous 
background doping densities (Dbg). 

 
Figure 5. Potential peaks height in 3D resistor simulation as a function of 
the average doping density. The Inset shows the trend of the Debye length 
(λD) and of the average distance between dopants (davg) with the doping 
density. 

Our previous analysis implies that the error in the resistance 
should increase as the doping density decreases. However 
Fig. 4 shows that the error in the resistance decreases at low 
doping densities. In order to understand this behavior the 
electron conduction profile is studied in more detail. 
Contrary to the situation in a MOSFET channel, the discrete 
dopants in a resistor are attractive potentials for electrons. 
As a result, the current density maxima are found 
corresponding to the dopants positions. This is clearly 
shown in Fig. 7(a) which shows a plot of the electron current 
density taken through the center of a resistor with a single 
discrete dopant placed at the center. However, if we 
integrate the current density inside the dashed circle (region 
B, representing the region where the potential peak of 
Fig.7(b) has the largest impact) then we obtain a current one 
order of magnitude smaller than the current flowing outside 
the dashed circle (region A). This implies that, the carrier 
current still follows a percolative path between the discrete 
dopants, when few dopants are present in the device. 

 
Figure 6. 1D electrostatic potential in the case of one discrete dopant at the 
center of the resistor with different contiuous background doping densities. 
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Figure 7. (a) Current density in the median plane between source and 
drain in the case of one discrete dopant placed at the center of the 
resistor, and (b) corrisponding 1D electrostatic potential. 

This current flow between dopant atoms becomes more 
important as the number of dopants in the device 
becomes small. For this reason the error curve of Fig.4 
start to decrease towards low doping densities. Even 
though the error is reduced at low dopant numbers there 
is a secondary effect associated with the position of 
dopant atoms. Fig. 8(a) shows the normalized error in 
the resistance for different numbers of dopants extracted 
from the different doping densities. It can be seen that 
even if the dopant numbers are the same, at low 
numbers there is a spread in the error coming directly 
from the positional effect. This spread in error values is 
large at low doping densities and strongly decreases at 
high doping densities. Indeed, in the presence of 
percolative conduction the relative position of dopants 
has a strong impact in determining the resistance of 
atomistic devices. This is also evident in Fig. 8(b) where 
the slope of the normal probability plot of the resistance 
error increases with the number of discrete dopants.   
Moreover it should be noted that the error in the 
resistance (Fig. 4) tends to zero when the number of 
dopants is very small, regardless of whether DG or a 
classical approch is used. This again confirms that, in 
presence of very few dopants, the current mainly flows 
outside the sphere of influence of the potential wells. 
 

 
Figure 8. (a) Resistance error for each atomistic device for fixed 
values of number of dopants in the resistor, and (b) corrisponding 
normal probability plot for three values of number of dopants. 

 
Figure 9. Resistance error curve for different mobility models: Constant, 
Masetti[6] (M), Caughey-Thomas[7] (CT) and Lombardi[8] (L). 

The previous results have been obtained using only the 
Masetti[6] mobility model. If field dependent mobility 
models such as Caughy-Thomas[7] or Lombardi[8] are 
included we obtain the results shown in Fig. 9. Here it can be 
observed that there is an increase in the error due to the 
electrostatic potential wells associated with each discrete 
dopant in ‘atomistic’ simualtions. However, this increase in 
the resistance error is negligible at high doping densities, 
due to the Debye screening, and remains small at low 
doping densities, due to the percolative regime. 
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Figure 10. Electron mobility used to remove the resistance relative error 
(dashed line) compared to the Masetti model mobility (solid line) used for 
the continuosly doped devices. 

 

 
Table 1. Masetti model parameters values extracted to obtain a match, 
within 0.5% of error, between the continuosly doped device resistance and 
the average 'atomistic' device resistance. 

 
The previous analysis suggests that (i) in attempting to 
eliminate the error from the simulations the effects of the 
electric field can be ignored and (ii) the error in the 
resistance can be removed by modifying the mobility in 
‘atomistic’ simulations according to: 
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Figure 11. Scatter plot of ensembles of 1000 atomistically doped 50x50x50nm silicon resistors, with currents normalized to the analytical average case 
for doping densities of 1x1017 cm-3, 1x1019cm-3 and 1x1021cm-3. 

 
μatomistic ND( ) = 1+ err ND( )⎡⎣ ⎤⎦⋅μcontinuous ND( )  

where μcontinuous(ND) is the mobility used in simulations 
of continuously doped resistors and err(ND) is the DG 
resistance error of Fig. 4. It is clear that err(ND) is 
defined only for a finite number of discrete values so an 
interpolation strategy is required, especially when this 
correction is applied to the simulation of MOSFETs 
with non-uniform doping profiles. A better strategy is to 
adopt an analytical expression for the corrected 
‘atomistic’ mobility. In the rest of this paper we employ 
the second method. 
Fig. 10 shows the electron mobility that should be 
adopted in the ‘atomistic’ simulations to match the 
resistance of the continuously doped devices, 
comparing it with the conventional Masetti model 
mobility [6]. It is important to note that the ‘atomistic’ 
mobility only slightly differs from the Masetti model. 
This suggest that an analytical expression for the 
‘atomistic’ mobility model can be found by modifying 
the parameters of the Masetti model, without 
introducing any other complex relationship.  

 
Figure 12. Resistance error curve for a 50x50x50nm (filled symbols) 
and a 100x100x100nm (open symbols) resistors with two different 
aspect ratio. 

Table 1 reports the conventional and the modified 
values for the Masetti model parameters obtained to 
have an error in the resistance of less then 0.5% over the 
whole range of doping densities. Fig. 11 shows the 
scatter plot of ensembles of 1000 atomistically doped 
silicon resistors, with currents normalised to the 
continuously doped case for doping densities of 1×1017 

cm-3,  1×1019 cm-3 and 1×1021 cm-3. It is evident that the 
mobility correction remove the resistance error without 
introducing distorsions in the original statistical 
distribution. 
Finally, Fig. 12 points out that the percolative nature of the 
conduction at low doping densities makes the error 
dependent on the aspect ratio of the device. As expected, a 
shrinking in the resistor cross-section (maintaining a 
constant volume) results in an increased error at low 
doping. This effect becomes more prominent as the volume 
of the resistor is reduced. Hovewer it affects only the low 
doping region, that is usually irrilevant in the simulation of 
MOSFET source and drain regions. Moreover Fig. 12 
shows that the error curve remains almost unchanged when 
increased to nearly ten times the volume of the resistor 
(50x50x50 nm3 to 100x100x100 nm3). This confirms that 
the charge trapping is an artifact of ‘atomistic’ simulations 
and that the analytical resistance represents a good choice 
of reference with which to compute the resistance error.  
 

IV.  CONCLUSIONS 
In conclusion, we presented a comprehensive 3D statistical 
study of the increase in resistance associated with charge 
trapping in ‘atomistic’ simulations, considering a wide 
range of doping densities and mesh spacing. A modified 
mobility model for the ‘atomistic’ simulations was 
proposed to suppress the error related to the fictitious 
charge-trapping. The results are of utmost importance for 
the correct ‘atomistic’ modeling of source/drain access 
resistance in scaled MOSFET devices. 
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