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Abstract— A new approach for improving physical scalability of 
existing compact models is proposed.  The behavior of internal 
BSIM4 model parameters in response to a change in fabrication 
process condition is modeled by physics-based meta-model 
equations.  By recovering missing links between the fitting 
parameters and device design parameters, the model parameter 
sets for variant transistors with different channel implant dose 
can be predicted starting from a parameter set of existing 
reference transistors. 
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I.  INTRODUCTION 
MOSFET compact models usually have many fitting 

parameters to meet the demand for high accuracy.  As a result, 
considerable effort is required for the parameter extraction 
procedure.  Moreover, since there are many variant transistors 
(multiple Vth, multiple Tox) in advanced CMOS technologies, 
the effort becomes huge.  Physical scalability of the compact 
model often helps saving this effort, because crude parameter 
sets for variant transistors can be created by simply changing 
the relevant device design parameters.  It is also useful for 
creating alpha models without silicon data for performance 
predictions.  However, this is not possible with BSIM4, though 
it is still widely used in the industry [1].  In this work, a new 
approach for adding physical scalability to BSIM4 is proposed.  
Physics-based meta-model equations are developed and their 
effectiveness is demonstrated. 

II. MODELING 

A. Concept of meta-modeling 
Fig.1 shows the concept of the meta-modeling.  Ideally, the 

characteristics of devices should be linked with device design 
parameters, such as channel impurity concentration Nch, gate 
oxide thickness Tox, etc thorough physics based models.  
However, in BSIM4, some of internal parameters, which are 
originally physics based, lost their links with the design 
parameters.  This results in the loss of proper correlation 
between the internal parameters, and loss of scalability.  In our 
approach, the missing links are re-constructed by external add-
on meta-models.  Using such meta-models, a model parameter 
set for the transistors with a modified fabrication process 

condition can be easily predicted from existing reference 
transistors. 
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Figure 1.  Concept of meta-modeling. Missing links between device design 
parameters and model parameters (a) are reconstructed by physics-based add-
on meta-models (b). (c) Specific meta-models for BSIM4 Vth-rerated model 
parameters. 

B. Meta-model for BSIM4 Vth model parameters 
Meta-model equations for key parameters in BSIM4 Vth 

model are developed.  Dominant terms in BSIM4 Vth equations 
are summarized in Table I. 

BSIM4 channel impurity concentration parameter NDEP is 
one of the model parameters which are tightly linked to device 
design parameters.  When the channel impurity concentration 
Nch is altered by a modification of fabrication process 
condition, NDEP directly follows the change of Nch, i.e., 

 'N ch=NDEP' . (9) 
Parameters with prime represent model parameters or device 
design parameters for the modified process condition. 
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TABLE I.  DOMINANT TERMS IN BSIM4 VTH EQUATION. 
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TABLE II.  META-MODEL EQUATIONS FOR VTH-RERATED MODEL  PARAMETERS. 
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On the other hand, a reverse short channel effect (RSCE) 
parameter LPE0 is a typical example of an internal parameter 
which lost its scalability.  In BSIM4, RSCE caused by halo is 
modeled based on a step-like 1-D lateral channel doping 
profile [2] shown in Fig. 2 where Nhalo is doping concentration 
in halo, Lhalo is lateral expanse of halo, Leff is effective channel 
length.  Vth is determined by the average concentration in the 
channel Nav, which changes as a function of Leff.  According to 
this model, Vth should scale as  
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In BSIM, increase of Vth due to RSCE is modeled as (2) in 
Table I. It is clear from (10) and (2) that LPE0 should be a 
function of Nch as 

 chhalohalo NLN  LPE 20 = . (11) 
However, in BSIM4 parameter extraction, there is no link 
between LPE0 and Nch.  Rather, LPE0 is specified 
independently as a fitting parameter.  However, the lost link 
can be easily recovered by scaling LPE0 according to the 
following equation.   
 ( )'0 chch NNLPE ⋅=LPE0' . (12) 
Meta-model equation for another RSCE parameter LPEB 
which appears in (3) is similarly derived as follows. 
 ( )'chch NNLPEB ⋅=LPEB' . (13) 
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Figure 2.  Simplified 1-D lateral impurity profile to model RSCE parameters. 

Meta-model equations for DIBL and short channel effect 
(SCE) model parameters are derived to recover their link with 
RSCE.  As shown in (4), (7) and (8), DIBL is described using 
characteristic length lt0 in BSIM4.  Characteristics of short 
channel devices will be determined by Nav, not Nch.  However, 
lt0 in BSIM4 is proportional to NDEP-1/4.  A DIBL model 
parameter DSUB is used to compensate for this discrepancy, 
i.e., DSUB can be modeled to be proportional to (Nav/NDEP)1/4

  
( )[ ] 4101 effLLPE+∝ . 

To model DIBL, the influence of non-uniform vertical 
doping profile should also 1be taken into account.  The simple 
1-D doping profile model (Fig. 2) is modified to 2-D model as 
shown in Fig. 3.  Average impurity concentration for the 
surface region Nav1 and that for the deep region Nav2 are 
separately considered in this model.  Nav1 and Nav2 can be 
associated with RSCE parameters LPE0 and LPEB, 
respectively.  This is because Vth which affected by LPE0 is 
determined by the impurity profile in surface region (inside of 
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the depletion layer) whereas Vth shift due to body effect which 
affected by LPEB is determined by that in deep region (near 
the depletion layer edge). 

According to the discussions above, meta-model equations 
for DSUB considering only surface region: 
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and that considering only deep region: 
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are derived.  Appropriate value for DSUB’ is expected to lie 
between DSUB’1 and DSUB’2.  As the simplest estimation, 
(16) in Table II is derived.  Meta-model equation for SCE 
parameter DVT1 is also derived as (17) in Table II according 
to similar discussion. 
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Figure 3.  Simplified impurity profile to model SCE and DIBL parameters. 
Vertical distribution is introduced. 

A long-channel Vth parameter VTH0 and a body effect 
parameter K1 are modeled by following simple equations,  

 llongchannethVVTH _0 Δ+=VTH0'  (18) 
 1Kk ⋅=K1'  (19) 
where ΔVth_longchannel  is Vth difference and k is ratio of K1 in 
long-channel transistors.  Table II summarizes Meta-model 
equations for Vth-related model parameters.  Only three input 
parameters (Fig. 1 (c)) other than a Vth model parameter set for 
existing devices are required to generate a Vth model parameter 
set for the modified devices. Meta-model for mobility model 
parameters U0 and UA is also developed using the ratio of 
mobility. 

III. RESULTS 
To test the effectiveness of this method, model parameter 

sets for low- and high-dope channel devices were derived by 
meta-models.  The model parameter set for existing medium-
doped channel devices is used as a reference.  Figs. 4(a) and 
4(b) show the Vth-Lg characteristics and Fig. 5 shows DIBL-Lg 
characteristics.  Model parameters generated by meta-model 

equations adequately predicts measured result, whereas the 
case simply changing NDEP and VTH0 does not follow 
measured result.  Figs. 6(a) and 6(b) show Id-Vgs and Id-Vds 
characteristics of low-dope channel NFET with Lg ~ 55 nm. Id 
is well estimated with a maximum error less than 3% by meta-
model-based parameter set. 

  These results show that by simply modifying the Vth-
related parameters, moderately accurate variant parameter sets 
can be obtained.  Though fine tuning of the parameters is still 
required in some cases as shown in Fig. 7, only a small number 
of parameters (in this case three parameters) are required for 
additional fitting.  Fig. 8 summarizes the reduction of 
maximum Id error with parameter tuning from reference model 
parameter set.  In this work nine parameters are modified in a 
batch using meta-models, and maximum Id error is 
automatically reduced to less than 6%. 
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Figure 4.  Vth-Lg characteristics of (a) NFET and (b) PFET. Amount of 
VTH0 shift is determined by Lg ~ 55 nm transistor in the case of “only 
NDEP&VTH0.” 
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Figure 6.  (a) Id-Vgs and (b) Id-Vds characteristics of low-dope channel 
NFET (Lg ~ 55 nm). 
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Figure 7.  Id-Vds characteristics of low-dope channel NFET (Lg ~ 170 nm). 
Additional fitting is performed using three model parameters. 
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Figure 8.  Reduction of error in Id by tuning each parameter sequentially 
from top to bottom. Note that the order of parameters is not important. Upper 
nine parameter values are set automatically by meta-models. 

IV. CONCLUSION 
The concept of meta-modeling for improving BSIM4 

physical scalability was proposed.  Basic meta-model 
equations were developed and applied to 65nm technology 
devices for deriving parameter sets for different channel 
doping.  The errors of the obtained models were reduced to 
6%, as compared with 13% for simple VTH0 tuning.  The 
concept is practically useful for improving efficiency of 
parameter extraction. 
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