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Abstract—A physics-based gate current model has been de-
veloped based on nonequilibrium electron energy distributions
obtained from the spherical harmonic expansion of the Boltz-
mann equation. The model accounts for band structure effects,
relevant microscopic scattering mechanisms, and electron injec-
tions caused by tunneling and thermionic emission processes with
parallel momentum conservation and image potential barrier
lowering. Obtained distribution functions and injection currents
agree well with Monte Carlo simulations and experiments.

I. INTRODUCTION

Hot carrier injection into the gate oxide in MOSFETs is
responsible for gate leakage and oxide degradation, and it
has been used in the write operation in NOR flash memories.
In order to model the hot carrier injection current, accurate
knowledge of the nonequilibrium electron energy distribution
is required. Although the Monte Carlo (MC) method would
be the most rigorous tool to study hot electron transport
[1], the MC method involves large statistical noise in the
tail distribution that is important in the gate current calcu-
lation. This paper describes a gate current model based on
the Spherical Harmonic Expansion (SHE) of the Boltzmann
Transport Equation (BTE) [2], [3], [4], [5] that we have
implemented in the device simulator Sentaurus Device [6].
The implemented SHE model accounts for the full band
structure obtained from the empirical pseudopotential method
(EPM) [7] and microscopic scattering mechanisms caused
by acoustic and intervalley phonons, ionized impurities, and
impact ionization. The implemented gate current model covers
tunneling and thermionic emission components, and it takes
into account parallel momentum conservation, image potential
induced barrier lowering, and scattering probability within the
image force potential well [1]. We validate our model by com-
paring obtained distribution functions and gate currents with
MC simulations and experiments, and provide a gate current
simulation example for a long-channel MOSFET where the hot
electron injection is the dominant gate current mechanism.

II. DISTRIBUTION MODEL

In this work, electron energy distribution functions are ob-
tained as a post-process with the conduction band energy EC

and the net recombination rate Rnet given by drift-diffusion
(DD) or hydrodynamic (HD) simulations. The lowest-order
SHE of the BTE after the H-transformation reads [3]:

−∇ ·
[
1
3
τ (r, ε) g (ε) v2 (ε)∇f (r,H)

]
= g (ε) s (r, ε) , (1)

where r is the position, H is the total energy, ε = H−EC (r)
is the kinetic energy, v is the magnitude of the electron
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Fig. 1. Comparison of (a) g (ε) ≡ ∫
ε dsk/[8π3

� |v (k)|], (b) g (ε) v2 (ε) ≡∫
ε dsk |v (k)| /(8π3

�), and (c) k2 (ε) ≡ ∫
ε dsk/(4π) of the silicon

conduction band obtained from the EPM bandstructure calculation and from
the analytic band model. The integration

∫
ε dsk is over the equi-energy

surface for a particular valley (the Brillouin zone is subdivided into six valleys
[8]), including the sum over four conduction bands from the lowest one.

velocity, 1/τ is the total scattering rate, g is the density-
of-states, f is the occupation probability of electrons, and
s is the net in-scattering rate due to inelastic scattering and
generation-recombination processes. Equation (1) is a conser-
vation equation with diffusion and source terms for a fixed
total energy H , which can be discretized by the conventional
box integration method with unstructured meshes. We obtain
g (ε), g (ε) v2 (ε), and k2 (ε) from the EPM bandstructure
calculation [7] as shown in Fig. 1 where the dashed lines repre-
sent the results obtained from the analytic nonparabolic band
model [9]: g (ε) = 2π (2mn)3/2

√
ε (1 + αε) (1 + 2αε) /h3,

v2 (ε) = 2ε (1 + αε) /[mc (1 + 2αε)2], and k2 (ε) =
2π2

�g (ε) v (ε) with mn = 0.328 m0, mc = 0.26 m0, and
α = 0.5 /eV. Although the analytic band model works well
for ε < 1 eV, it is important to use the full bandstructure for
gate current calculations since the tail distribution is largely
affected by the bandstructure for ε > 1 eV.
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The total scattering rate and the net in-scattering rate can
be written as:

1
τ

=
1

τac
+

1
τope

+
1

τopa
+

1
τc

+
1
τii

, (2)

s (ε) =
f (ε − εop) e−

εop
kT − f (ε)

τope (ε)
+

f (ε + εop) e
εop
kT − f (ε)

τopa (ε)

+
floc (ε) − f (ε)

τii (ε)
− Rnetfloc (ε)

n
, (3)

where 1/τac, 1/τope, 1/τopa, 1/τc, and 1/τii are scattering
rates due to acoustic phonons, optical phonon emission, optical
phonon absorption, Coulomb centers, and impact ionization,
respectively, εop = 60 meV is the optical phonon energy, n
is the electron density, Rnet is the net recombination rate, and
floc is the local equilibrium distribution function. The acoustic
and optical phonon scattering rates can be written as [9]:

1
τac (ε)

=
2πkTD2

ac

�ρc2
L

g (ε) , (4)

1
τope (ε)

=
π�D2

op

ρεop
(Nop + 1) g (ε − εop) , (5)

1
τopa (ε)

=
π�D2

op

ρεop
Nopg (ε + εop) , (6)

where Dac = 9.27 eV and Dop = 1.25 × 109 eV/cm are the
deformation potentials for acoustic and g-type optical phonons
calibrated to reproduce the intrinsic bulk mobility, ρ is the
mass density, cL is the sound velocity, and Nop is the phonon
number. The Coulomb scattering rate can be written as [8]:

1
τc (ε)

=
q4π (ND + NA) g (ε) ζ

4�ε2semk4 (ε)

[
ln (1 + b) − b

1 + b

]
, (7)

where b = 4k2 (ε) kTεsem/q2 (n + p), εsem is the dielectric
constant, and ζ is a fitting function introduced to match
the Caughey-Thomas low-field mobility curve as a function
of majority and minority doping concentrations. The impact
ionization scattering rate can be written as [8]:

1
τii (ε)

=

⎧⎪⎨
⎪⎩

(
ε−εii,1
1 eV

)3

sii,1 εii,1 < ε < εii,3(
ε−εii,2
1 eV

)2

sii,2 ε > εii,3

, (8)

where sii,1 = 1.49×1011 s−1 and sii,2 = 1.13×1012 s−1 are
the impact ionization coefficients, and εii,1 = 1.128 eV, εii,2 =
1.572 eV, and εii,3 = 1.75 eV are the reference energies.

Figs. 2 and 3 compare the energy distribution functions
obtained from the SHE and from the full-band MC method
(Sentaurus MOCA and Sentaurus SPARTA [10]) for different
uniform electric fields and for a 1D n+ − i − n+ structure
with different drain voltages. The SHE method gives slightly
smaller tail distribution compared with the MC method as we
have intentionally used slightly large Dop in order to match
the experimental gate current reported in [11].
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Fig. 2. Comparison of the electron energy distribution [2gvg (ε) f (ε)]
obtained from the SHE method and from the full-band MC method (Sentaurus
MOCA and Sentaurus SPARTA [10]) for different uniform electric fields
(F = 10, 50, 100, and 200 kV/cm).
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Fig. 3. Comparison of the electron energy distributions obtained from the
SHE method and from the full-band MC method (Sentaurus MOCA) [10]
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VD = 2, (b) 3, and (c) 4 V. The potential profile obtained from the DD
method is used in the SHE while the self-consistent potential is used in the
MC method.
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III. INJECTION MODEL

Once the electron energy distribution is available, the injec-
tion current density can be obtained from:

Jg = 2qgvPins

∫
v

dk

(2π)3

∣∣∣∣ ∂ε (k)
2�∂k⊥

∣∣∣∣ f [ε (k)] Γ [εt (k)] , (9)

where gv = 6 is the valley degeneracy, Pins = exp (−r0/λins)
is the probability of electrons moving from the interface to
the barrier peak without scattering, r0 is the distance from the
interface to the barrier peak, λins = 2 nm is the mean free
path in the insulator [1], Γ (εt) = exp[−2

∫ tins

0
κ (r, εt) dr] is

the transmission coefficient obtained from the WKB approx-
imation, and the integration

∫
v
dk is over a particular valley

and spin. The imaginary wavevector can be written as:

κ (r, εt) = �
−1

√
2mins [EB (r) − εt]Θ [EB (r) − εt] , (10)

EB (r) = EB0 + qFinsr + Eim (r) , (11)

Eim (r) = − q2

16πεins

∞∑
n=0

ε̃2n+1

[
1

ntins + r
+

1
(n + 1) tins − r

− 2ε̃

(n + 1) tins

]
, (12)

where εins = 2.15 ε0 is the high-frequency insulator dielectric
constant [1], ε̃ = (εsem − εins) / (εsem + εins), mins = 0.5 m0

is the insulator effective mass [1], Fins is the insulator electric
field, EB0 is the barrier height, and Θ is the step function.

Taking into account the parallel momentum conservation
during the tunneling process [1] and employing the spherical
band approximation, we define the tunneling energy as fol-
lows:

εt (k) = ε (k) − �
2k2 (ε) sin2 θ

2mins
, (13)

where k2 (ε) ≈ 2π2
�g (ε) v (ε) is the equi-energy surface area

of the momentum space divded by 4π [see Fig. 1 (c)], and θ is
the angle between k and the normal direction of the interface.
Inserting (13) into (9) gives:

Jg = Pins

∫ ∞

0

dεj⊥ (ε)
∫ 1

0

dxΓ [ε − γ (ε) x] , (14)

where j⊥ (ε) = 2qgvg (ε) v (ε) f (ε) /4 and γ (ε) =
π2

�
3g (ε) v (ε) /mins. In the literature, there also exist dif-

ferent approximations of the tunneling energy: εt (k) = ε
(tunneling energy is equal to the kinetic energy [12], [13])
and εt (k) = ε⊥ (k) ≈ ε (k) cos2 θ (tunneling energy is equal
to the perpendicular component of the kinetic energy [14]).
Within our SHE framework, these approximations give the
following current density expressions:

J (εt=ε)
g = Pins

∫ ∞

0

dεj⊥ (ε) Γ (ε) , (15)

J (εt=ε⊥)
g = Pins

∫ ∞

0

dεj⊥ (ε)
∫ 1

0

dxΓ (εx) . (16)
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Fig. 4. Comparison of the emission probability of hot electrons obtained
from measurements [11] and calculations.

In order to validate our injection model, we simulate the hot
electron injection experiment reported in [11]. With a slight
calibration of the barrier height (EB0 = 3.2 instead of 3.1 eV),
we can reproduce the experimental results quite well as shown
in Fig. 4 (a). In Fig. 4 (b), we also compare (14) – (16) for
the case of VB = −10 V. Equations (14) and (16) give very
similar results while (15) gives too large emission probability.

IV. A LONG-CHANNEL MOSFET EXAMPLE

We study the gate current of a long-channel nMOSFET
with Leff = 0.8 µm and tins = 21.5 nm for different bias
conditions as shown in Fig. 5. As the DD and HD models
predict slightly different potential profiles and generation rates,
the corresponding gate currents are different although the
difference is relatively smaller than the difference observed in
the lucky electron [15], [16] or Fiegna [12] model depending
on the choice of the effective field. In order to see the influence
of the impact ionization process, we have intentionally turned
off the impact ionization process and compared the gate
current in Fig. 5 (b). This shows that the impact ionization
process significantly increases the gate current when a negative
body voltage is applied as long as the gate voltage and
drain voltage are relatively small. In Fig. 6, we plot the gate
current density along the channel interface with and without
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Fig. 5. Calculated gate current as a function of gate bias for a long channel
nMOSFET with Leff = 0.8 µm and tox = 21.5 nm.
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Fig. 6. Gate current density along the channel interface for different gate
voltages when VD = 6 V and VB = −4 V, calculated with (solid lines) and
without (dashed lines) the generation rate due to the impact ionization.

the impact ionization process, which shows that the impact
ionization process increases gate current density in the middle
of the channel by the channel-initiated secondary electron
injection mechanism [17] while the gate current density at
the drain end of the channel is determined by the channel hot
electron injection [15].

V. CONCLUSION

We have implemented a gate current model based on the
SHE of the BTE. The nonequilibrium energy distribution
function obtained from the present model agrees well with
the MC method, and the implemented injection model can
reproduce the measured emission probability of hot electrons.
We believe that this model will be useful for studying hot
carrier injections in MOSFET devices and flash memories.
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