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Abstract—Statistical variability is a major challenge for CMOS 
scaling and integration. In order to achieve variability aware 
design, it’s critical important to reliably transfer device 
characteristics statistical variability information into compact 
models. A PCA based statistical compact modeling strategy is 
benchmarked against ‘atomistic’ device simulation and direct 
statistical parameter extraction strategy. The results indicate that 
PCA based approach may introduce considerable error in tail of 
distribution, which in turn may generate pessimistic or optimistic 
conclusions in statistical circuit simulation. 
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I. INTRODUCTION 

Statistical variability (SV) introduced by Random Discrete 
Dopants (RDD), Line Edge Roughness (LER) and Poly Gate 
Granularity (PGG) already plays an important role in 
contemporary CMOS [1]. The investigation of flexible and 
accurate, yet economical strategies for capturing the above 
statistical variability in industrial standard compact models is 
of great importance for variability aware design since compact 
model acts as the interface between circuit/system designers 
and semiconductor foundries [2]. The overall accuracy of 
circuit/system simulation is determined by the accuracy of 
circuit components modelling. In this paper, using as a 
reference simulation results obtained by the well-calibrated 
Glasgow ‘atomistic’ device, we compare different strategies for 
statistical compact model parameter generation and their 
impact on the accurate reproduction of the magnitude of key 
MOSFET figures of merit, and their correlation.  

II. STATISTICAL VARIABILITY IN 35NM PHYSICAL GATE 
LENGTH DEVICE

The test-bed for our comparison was the physical 
variability simulation results for a state-of-the art 35 nm 
physical gate length nMOSFET device with the performance 
matching Intel 45nm technology generation device results. In 
order to emphasize the intrinsic parameter fluctuation, the 
minimum size device with width ratio of 1 is targeted in this 
study. The simulations were carried out with the Glasgow 3D 

‘atomistic’ drift diffusion (DD) simulator employing density 
gradient quantum correction simultaneously for electrons and 
holes. The combined effects of RDD, LER and PGG as SV 
sources have been taken into account simultaneously. The 
RDD are generated based on continuous doping profile by 
placing dopant atoms on silicon lattice sites with the 
probability determined by the local ratio between dopant and 
silicon atom concentration [3]; The LER is introduced through 
1-D Fourier synthesis with a power spectrum corresponding to 
a Gaussian auto-correlation function [4]; The PGG is 
introduced by importing a random section of a large template 
polycrystalline silicon grain image for the whole gate region. 
Along the grain boundaries, the Feimi level remains pinned at a 
certain position in the silicon bandgap [5]. The potential 
distribution at threshold voltage of a typical device from the 
statistical ensemble is illustrated in Fig. 1, highlighting the 
simultaneous impact of the variability sources.  

Figure 1. Typical potential profile in a 35nm physical gate length device 
with RDD, LER and PGG effects on 

The distributions of the key figures of merit including the 
threshold voltage (Vth), on current (Ion), off current (Ioff), DIBL
and subthreshold swing (S) obtained from the physical device 

This work was support by the UK Engineering and Physical Sciences 
Research Council NANOCMOS grant. 

978-1-4244-3947-8/09/$25.00 ©2009 IEEE 143



simulations are shown in Fig. 2. Clearly Vth, DIBL and log(Ioff)
have largest spread with normalized standard deviations ( /μ)
of 23%, 15% and 7.6%. This indicates that SV has strong 
impact on the device electrostatic-dominated subthreshold 
behaviour, introducing noticeable modulation of the short 
channel effects. It is well known that the DD simulations 
underestimate the Ion variability [6], but still we observe 8.5% 
normalized standard deviation in Ion, equivalent to an  of 
100μΑ/μm for a minimum size devices. Although multi-width 
devices are commonly used in digital design, this level of 
variation will still has a big impact on yield and performance of 
circuit and system.  
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Figure 2.  Distributions of key 
device electrical parameters under 
the influence of combined RDD, 
LER and PGG effects. 

III. STATISTICAL COMPACT MODELING

A. Direct extraction approach 
A two-stage statistical compact model parameter extraction 

strategy [7] has been developed to transfer the SV information 
obtained by the physical simulations into BSIM4 compact 
models [8]. In previous studies, only the variability associated 
with RDD was considered. In this work, in order to precisely 
reproduce the individual behaviour of each simulated transistor 
under the influence of combined SV sources, a new set of 7 
BSIM4 parameters is identified: Vth0 is basic long channel 
threshold voltage parameter, and is selected to account for 
traditional threshold variation introduced by SV; U0 is low-
field mobility parameter, and is selected to account for current 
factor variation caused by SV; Nfactor and Voff are basic 
subthreshold parameters, and are selected to account for 
subthreshold slope and off current variation; Minv is moderate 

inversion parameter, and is selected to account for variation at 
moderate inversion regime; Rdsw is basic S/D resistance 
parameter, and is selected to account for dopant variation at 
S/D region; Dsub is DIBL parameter and is selected to account 
for DIBL variation introduced by SV.  

The final outcome of direct statistical parameter extraction 
is a statistical set of compact models, each member of the 
ensemble representing a particular physical simulation. The 
mean RMS error of the statistical compact model set is 1.2%. 
The strong correlation between electrical and key statistical 
BSIM parameters illustrated in Fig. 3 indicates that the 
physical meaning of the compact model parameters is 
maintained during statistical extraction. The relatively larger 
threshold voltage value of this 35nm device comparing to Vth0
(long channel threshold voltage) clearly demonstrates the 
strong reverse short channel effects introduced by heavy halo 
doping in this device.  
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Figure 3. The correlation between electrical and BSIM parameters 

Most importantly, by applying this strategy, the correlations 
between key transistor figures of merit are well preserved, as 
illustrated in Fig. 4. However there are correlations between the 
7 BSIM4 parameters [7], which prevent independent statistical 
generations of compact model prameters based on analytical 
approximation of their individual distributions. 
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Figure 4. The scatter plots between electrical parameters. Down-left: 
results from physical 3D device simulation; Up-right: results from 
direct statistical compact modeling. 
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B. PCA approach 
The general purpose of principal component analysis 

(PCA) is to transform a large number of correlated variables 
into a small number of uncorrelated variables called principal 
components (PC) [9]. The main purpose of the PCA in this 
study is to allow random generation of 7-parameter set based 
on the analytic approximation of statistical independent 
principal components. Before apply PCA on parameter set, all 
the parameter distributions have been normalized with μ of 0 
and  of 1, and the covariance matrix S is generated based on 
the normalized parameter set distributions. The key step of 
PCA is to find the eigenvectors and eigenvalues of S, which 
follows: 

                                          U′SU = L                                     (1)

Where U is eigenvectors, and L is eigenvalues. And the 
transformed variables  

                                           z = U′x                                        (2) 

are the principal components, where x are the original 
variables. For 7-parameter set investigated in this study, the 
first PC accounts for 45.5% of parameter variations, where the 
last PC accounts for just under 1% of parameter variations. 

PCA itself does not require that the original multi-
dimension data follow a particular distribution. However, in 
order to reconstruct the original data from statistical 
independent principal components, it is desirable that the 
original data closely approximate Gaussian distributions and it 
can be recovered by following operation: 

                                         x = Uz                                          (3) 

where the corresponding principal components follow 
Gaussian distribution with mean of 0 and variances of 
eigenvalues L.
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Figure 5. The distribution of two of 7 mapped BSIM parameters 

 Unfortunately, the typical distributions of the 7 BSIM4 
parameters are not always normal, as shown in Fig. 5. This 
inevitable introduce errors in the values of the statistical 
compact model parameters after the PCA process. Fig. 6 
compares the distribution of 7 BSIM parameters obtained 
directly from statistical parameter extraction, and generated 
from the PCA process with all 7 PC involved. The shapes of 
the BSIM4 parameter distributions are reasonably well 

preserved by the PCA approach, and the mean value of each 
BSIM4 parameter is also closely regenerated. Figure 6h also 
demonstrates that the correlations between statistical 
parameters are also generally preserved by the PCA approach, 
although there are some disagreements in the tails of the 
parameter distributions. 
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Figure 6. (a)-(g): The distributions of 7 mapped BSIM parameter from 
direct statistical parameter extraction and PCA process. (h): The correlation 
between two mapped BSIM parameters 

Fig. 7 shows the scatter plot between two key electrical 
parameters, Ion and Vth extracted from compact models 
generated by direct extraction approach and PCA approach 
respectively. It clearly demonstrates that the correlation 
between key figures of merits is well preserved by PCA 
approach; however, PCA approach results in a broader 
distribution compared to the direct extraction case. Depending 
on the particular application of the PCA generated statistical 
compact models, this kind of error may give pessimistic or 
optimistic results on circuit simulation. 
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Figure 7. The scatter plot between Ion and Vth.

C. Impact of compact modeling approach on circuit 
simulation 
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Figure 8. The distribution of inverter delay 

In order to investigate the impact of different statistical 
compact modeling strategies on accuracy of circuit simulation, 
Monte Carlo circuit simulations were carried out on a CMOS 
inverter with nMOSFET device randomly generated from these 
two statistical compact modeling approaches respectively. 
Since direct extraction approach closely reproduces ‘atomistic’ 
physical device simulation results, the circuit simulation results 
based on this approach is treated as ‘gold standard’ in this 
comparison study. The delay of inverter is mainly determined 
by device’s threshold voltage and drive current (assuming load 
capacitance unchanged). Although the mean values of key 
figures of merit from these approached are very close, the 
corresponding distributions were broadened by PCA approach, 
which in turn may generate considerable errors on standard 

deviation of delay, as demonstrated by Figure 8. The mean 
value of inverter delay using directly extracted and PCA 
generated statistical compact model parameters is in practical 
the same, but standard deviation of the delay from PCA 
approach is approximately 15% larger. As a result, for this 
particular type of circuits, employing PCA approach in 
statistical circuit simulation will give pessimistic results and 
introduce unnecessary large margin in circuit design.  

IV. CONCLUSIONS

The physical simulation of the combined effect of RDD, 
LER and PGG in 35 nm physical gate length MOSFETS has 
been used to benchmark different statistical compact model 
generation strategies. The directly extracted statistical 
parameter set preserves the distribution and the correlation 
between key MOSFET figures of merit. The use of PCA to 
generate statistical compact model parameters generally 
preserves the correlation between figures of merit but leads in 
significant errors in the tails.  
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