
Compact Modeling of Quasi-Ballistic Transport and 
Quantum Mechanical Confinement in Nanowire 

MOSFETs: Circuit Performances Analysis  

Abstract— In this paper we develop a compact model for 
ballistic/quasi-ballistic transport in Nanowire. Starting from the 
well-known approach of Natori/Lundstrom, we enhanced it by 
including an original modeling of SCE/DIBL (Short Channel 
Effect and Drain Barrier Lowering), scattering mechanisms and 
quantum mechanical confinement. Our drain current model has 
been validated by comparisons with numerical simulations at 
device and circuit levels. Finally, we used our model to simulate 
simple circuit elements and to evaluate the impact of Nanowire 
architecture on the device and circuit performances. 

 Nanowire MOSFET, quasi-ballistic transport, compact model, 
Ring Oscillator, quantum confinement. 

I. INTRODUCTION

With the continuous scaling of the MOSFET dimensions in 
the deca-nanometer range, Nanowire MOSFET have become 
very attractive mainly due to their excellent SCE immunity 
compared to conventional structures. Moreover, this 
aggressive MOSFET scaling introduces new transport 
properties such as ballistic/quasi-ballistic transport and new 
scattering mechanisms such as the Remote Coulomb limited 
Scattering (RCS) mobility due to HfO2/SiO2 gate stack. 
Several pioneering works [1-2] developed analytical 
formalisms to describe the ballistic and quasi-ballistic regime 
for ultra-short devices. Nowadays, it is fundamental to include 
in the same analytical approach the effects of SCE/DIBL, 
quantum mechanical confinement and scattering mechanisms. 
However, including this advanced physics does not allow 
neglecting the impact of parasitic elements on the device 
characteristics. 

In this work, we present a compact model describing the 
device operation in quasi-ballistic regime using the 
backscattering coefficient approach. This model is enhanced 
by the introduction of the “dynamic mean free path” concept 
(dfp including RCS [3]) and the use of a unified backscattering 
coefficient model valid in low and high electric field [4] with a 
parabolic potential assumption for the “kT-layer” [5]. In 
addition, we take into account the SCE/DIBL and quantum 
effects through the analytical model of the threshold voltage.  

Fig. 1. Nanowire MOSFET and definition of the main geometrical and 
electrical parameters.

II. ANALYTICAL THRESHOLD VOLTAGE

A. Quasi-ballistic current 
Our quasi-ballistic drain current model is basically inspired 

from the approach of Natori/Lundstrom [1-2] in the 
degenerate case, previously used in [6] and extended here for a 
Nanowire architecture. In this approach, the backscattering 
coefficient [4] in a parabolic approximation [5] of the “kT-
layer” (LkT) is given by: 
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where k is the Boltzmann constant, q is the electron charge 
and T is the lattice temperature. The model accuracy can be 
improved by including different scattering mechanisms 
through the “dynamical mean free path” (dfp). Due to 
TiN/HfO2/SiO2 gate stack, we have built an analytical model 
to take into account these new scattering effects. We obtain a 
complete dfp model based on an accurate calibration step on 
numerical [3] and experimental [4] data: 
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where Eeff is the effective electric field, Nfix is the fixed charge 
density at the HfO2/SiO2 interface, vinj is the injection velocity 
and 0rcs, rcs, 1, 2, 0ph, 0sr, rcs, sr are fitting parameters. 
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Fig. 2. Dfp vs. carrier densities (Ninv) for various fixed charge densities [3] 
(Nfix) for TiN/HfO2=3nm/SiO2=2nm gate stack. Comparisons between our 
analytical model (solid line) and numerical simulations [3] (dashed): (a) 
considering only the remote coulomb scattering and (b) comparison with 
experimental data for tsi=15 nm [7]; the model includes RCS, phonon and 
surface roughness scattering. 

     Figure 2 illustrates the calibration of this analytical model 
on numerical simulations [3] (figure 2.a for RCS mechanism) 
and on experimental data [7] (figure 2.b). As expected for 
large thickness, the silicon Nanowire mean free path is very 
close to 10 nm as in planar devices. In fact, recent works [8] 
showed that the variation of the mean free path extracted on 
wide range of channel lengths and silicon thicknesses is 
centred on 10 nm. Note that this observation will be modified 
by the impact of Nanowire thickness on the band structure. 
For a large thickness, the scattering rate has the same 
behaviour as that of a planar structure. However, for small 
silicon thickness (bellow 5 nm), the scattering rate are strongly 
impacted by the modification of the band structure and 
overlaps wavefunctions. Therefore, for a better description of 
interactions in the Nanowire this point should be taken into 
account in numerical and analytical models. 

Fig. 3. Vth quantum – Vth classical (Vth classical is the threshold voltage 
without quantum confinement) vs. tsi. Solid line for analytical model and 
diamond for numerical simulation [9] [Inset: VT due to SCE/DIBL versus Lc,
comparison between our model (solid line) and TCAD simulations (symbols)] 

B. Short channel effects  
     In order to obtain an analytical model for the description of 
short channel effects, we use the classical approach detailed in 
[10-11] and already used for symmetrical Double-Gate 
MOSFET in [6]. In the subthreshold regime, the minority 
carrier can be neglected and the one-dimensional Poisson’s 
equation is solved by applying the Gauss’s law to the 
particular closed surface (shown on the figure 1): 
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where  is the electric field and S is the surface electric field 
at the Si/SiO2 interface. Thus, equation (3) is the same as in 
[10] with only replacing tsi by tsi/2. After some mathematical 
manipulations, we obtain an analytical surface potential. 
However, only the value of the minimum potential at the 
minimum position (xmin) is important for SCE/DIBL: 
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where Cins is the cylindrical oxide capacitance, C1, C2, C3 and 
m1 are parameters resulting from the Poisson’s equation 
solving in the channel [10]. So, the expression of the threshold 
voltage shift ( VT) and the S-swing parameter (S) are then 
obtained from equation (4): 
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     We note that, according to [10], parameter  is a fitting 
parameter that includes the effect of lateral field variation in 
the depleted film. Therefore, the corresponding value of  is 
=0.8 for the expression of S and =4 for VT. Finally, in the 

inset of figure 3, VT obtained with our analytical model 
shows a good agreement with numerical simulation results 
(TCAD Silvaco). 
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Fig. 4. Drain current versus VDS (a) and VGS (b) for tsi=5 nm and Lc=25 nm 
for ballistic, ballistic with access resistance and quasi-ballistic with access 
resistance. Solid line for analytical model and circle for numerical simulation 
[12]. [Inset of figure (b) represents analytical and numerical potentials [12] 
along the channel for the quasi-ballistic case]. 

C. Quantum mechanical confinement  
         The threshold voltage is calculated using the boundary 
condition at the Si/SiO2 interface [11]: 
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where cins=Cins/( .tsi) is the normalized gate oxide capacitance 
for cylindrical Nanowire and F=(k.T/q).ln(Na/ni). The 
modeling of quantum confinement is based on the analytical 
expression of the surface potential s. The starting point of the 
development is to simplify the quantum inversion charge Qi in 
the subthreshold regime. For a Nanowire, we obtain:  
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where  is Plank constant, m1D is the one dimensional density 
of state effective mass (m1D= mt for n=1,2 and m1D=ml for 
n=3), mt is the transverse mass, ml is the longitudinal mass and 

Eg is the silicon gap. However, Qi in the subthreshold 
conditions can be simplified as: 
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where i
nE  are the energy levels resulting from the quantum 

confinement of carriers in the Silicon film. As described in 
[11] this parameter is the sum of two terms: the energy for an 
infinite rectangular two-dimensional potential and quantum 
correction of the energy levels using a first-order perturbation 
method. We finally obtain: 
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    We define the threshold voltage, Vth, as the gate voltage for 
which the inversion charge, Qi, reaches a constant value 
QiT=cins.k.T/q [11]. Then, the surface potential to be used in 
(6) is: 

)*ln(.. QQqTk iTs =ψ (10) 
     Finally, the threshold voltage used in the drain current 
equation [6] is VT=Vth- VT. Figure 3 illustrates the difference 
between Vth with quantum mechanical confinement and 
classical (i.e. without quantum mechanical confinement) 
cases. Our model shows also an excellent agreement with 
results obtained by numerical Schrödinger-Poisson solver 
calculation [9]. 

III. SIMULATIONS RESULTS

A. Model validation at the device level 
     Our model is implemented in Verilog-A environment to 
simulate the Nanowires schematically presented in figure 1. 
Figure 4.a and 4.b show the drain current versus VDS or VGS in 
cases of ballistic transport and quasi-ballistic transport with or 
without access resistances. This analytical model matched 
well with numerical simulation [12]. Note that the numerical 
approach in [12] represents an enhanced drift-diffusion-like 
approach to include ballistic/quasi-ballistic effects in a TCAD 
simulator. As expected, the current is strongly impacted by 
scattering mechanisms and access resistances. Moreover, to 
validate the parabolic potential approach for the “kT-layer”, 
we have compared our analytical potential approach with the 
corresponding numerical simulation (inset of figure 4.b). The 
two potentials fit at the beginning of the channel that 
corresponds to the “kT-layer” localization. Nevertheless, it is 
important to understand that the exponent of the power law in 
the “kT-layer” expression (1) depends on the effect of both the 
mean free path and electrostatic condition. Currently, very few 
“kT-layer” models [5] have an accurate analytical 
approximation of this exponent. 
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Fig. 5. Comparison between analytical (solid line) and numerical 
simulation [12] (circle) : (a) Vout vs Vin of CMOS in ballistic and quasi-ballistic 
with access resistance and (b) oscillation frequency of ring oscillator in 
ballistic and quasi-ballistic with or without access resistance. (c) Impact of 
quantum confinement, quasi-ballistic transport and access resistance for tsi=5
nm, Lc=25 nm, C=0.1 pF for TiN/HfO2=3nm/SiO2=2nm gate stack. 

B. Circuit operation 
We have performed a detailed analysis of CMOS Nanowire 

in both static and transient regimes. Figure 5.a and 5.b 
compare simulation results using the compact model and 
numerical simulations of CMOS inverters and three stages 
ring oscillators. To clearly highlight the impact of Nanowire 
architecture on circuit operation, we compared in Fig. 5.c the 
oscillation frequency of three stages Ring Oscillator for four 
cases: ballistic transport with and without quantum 
confinement, and quasi-ballistic transport (including quantum 
confinement) with or without access resistances. These results 
show (whatever the charge capacitance), the strong impact of 
quantum mechanical confinement, access resistances and 
quasi-ballistic transport on the oscillation frequency; all these 
phenomena reduce the oscillation frequency with respect to 
the ideal case of a ballistic transport in the channel and 
without access resistances and quantum confinement. 

IV. CONCLUSION

This work proposed a unified compact model for Nanowire 
MOSFET taking into account SCE/DIBL, quasi-ballistic 
transport, scattering mechanisms and quantum mechanical 
confinement. Nevertheless, our model does not address the 
evolution of the band structure with the silicon thickness, 
which plays an important role on transport properties. 

This model has been validated with some numerical 
simulation on single device and circuit element: CMOS 
inverter and three-stage ring oscillator. Therefore, we 
quantified the significant impact of quasi-ballistic transport, 
scattering mechanism, electrostatic condition and parasitic 
element on oscillation frequency. Our results show that if the 
influence of parasitic elements or quantum confinement is not 
considered in the analytical model, the Nanowire 
performances will be strongly overestimated. 
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