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Abstract—The characteristics of semiconductor devices are 
modeled by three coupled nonlinear partial differential equations 
consisting of the electron continuity, hole continuity, and Poisson 
equations. A variety of discretization approaches can be used to 
solve these equations. This paper compares finite volume 
Scharfetter-Gummel and finite element quasi-Fermi 
discretization schemes for a variety of devices and mesh element 
types. The simulation results show that a quasi-Fermi approach 
may be preferable to the more common finite volume 
Scharfetter-Gummel method for certain device simulation 
applications.  

Keywords-device simulation; discretization methods; finite 
volume method; finite element method; single-event upset 

 

I.  INTRODUCTION 
Three coupled nonlinear partial differential equations form 

the foundation of modern semiconductor device modeling.  
These equations, consisting of the Poisson, electron continuity 
and hole continuity equations, can be solved using a variety of 
approaches [1]. Current device simulators typically use a finite 
volume Scharfetter-Gummel (FVSG) discretization scheme to 
solve the equations by using electron, hole, and electrostatic 
potential variables (n, p, ψ) [2].  This study compares the 
FVSG method to a less prevalent finite element quasi-Fermi 
(FEQF) approach which solves the equations in terms of 
electron and hole quasi-Fermi levels and electrostatic potential 
( n, p, ψ) [3,4].  

One area where it may be profitable to investigate both 
methods is the simulation of radiation effects on semiconductor 
devices. Ideally, in a FVSG scheme, the grid should be aligned 
in the direction of current flow, since current flow is defined 
based on the grid edges. However, for radiation events, particle 
strikes can generate carriers throughout the device and the 
resulting carrier action is rarely aligned with the grid. For these 
non-ideal conditions the FEQF method could be more accurate 
and stable than the FVSG approach, since current flow in the 
FEQF method is not defined on the edges. 

The remainder of this paper is organized as follows: after a 
brief discussion of the simulation tool, the discretization 
methods will be presented in detail. Next, the grid element 
types and the physical models implemented in the simulation 
tool will be defined. Simulation results from a MOSFET device 
are used to show that both discretization methods give 

comparable results. Finally, a particle strike simulation will be 
used to evaluate the benefits of the FEQF approach as 
compared to the FVSG method.  

II. SIMULATION METHOD AND PHYSICAL MODELS 

A. Simulation Tool 
The Florida Object Oriented Device Simulator (FLOODS), 

using the drift-diffusion transport model, was used to simulate 
the FVSG and FEQF discretization methods. FLOODS 
supports a variety of mesh element types for 2-D and 3-D 
simulations which are used for comparison in addition to the 
FVSG and FEQF schemes. The simulation tool uses the 
UMFPACK direct linear solver [5].  

B. Discretization 
The set of coupled, time-dependent partial differential 

equations that govern semiconductor device behavior can be 
written as  

( ) ( ) )1(−+ −+−−=∇⋅∇ AD NNnpqψε  
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qdt
dn −⋅∇=  

)3(1
pp UJ
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where ε is the dielectric permittivity, q the elementary charge, 
ψ is electrostatic potential,  n and p are the electron and hole 
densities, ND

+ and NA
- are the ionized donor and acceptor 

densities, Jn and Jp are the electron and hole current densities, 
and Up, Un are the net electron and hole recombination rates.  

To obtain a closed system of equations, the current densities 
are written as quasi linear functions of driving potential in 
gradient form 

)4(nnn nqJ φμ ∇−=  

)5(ppp pqJ φμ ∇−=  

where ϕn, ϕp are the quasi-Fermi levels and μn, μp are the 
mobilities. The quasi-Fermi levels are functions of the 
electrostatic potential and the electron and hole carrier 
densities. For example, in the case of a nondegenerate 
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Figure 2. nMOS ION currents using the advanced physical model set for a 

variety of grid spacings 
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semiconductor, the quasi-Fermi levels can be written using 
Boltzmann’s relations as 

( ) )6(/ln in nn
q

kT−= ψφ  

( ) )7(/ln ip np
q

kT+= ψφ  

where kT/q is the thermal voltage and ni is the intrinsic carrier 
concentration. Using these relations, the current density in (4) 
and (5) can be written in the familiar relationship as the sum of 
drift and diffusion components 

)8(nqDqnJ nnn ∇+Ε= μ  

)9(.pqDqpJ ppp ∇−Ε= μ  

where E is the electric field and Dn,p  is the Einstein relation.  

When using electron and hole densities as solution variables 
in a finite volume scheme, each partial differential equation is 
integrated over a control volume A surrounding each node. The 
control volume is defined by the perpendicular bisectors of the 
mesh element sides. The divergence operators are integrated 
using Green’s formula so that the continuity equation can be 
discretized and the current Jn,p can be evaluated using the 
Scharfetter-Gummel formula [2]. 

For the finite element quasi-Fermi scheme, the continuity 
equations can be rewritten in terms of (4) and (5) and the 
gradient of ϕn,p can be computed over each mesh element. In 
FLOODS, the discretization for the finite element method starts 
by separating the domain into smaller subspaces (e.g. triangles 
or rectangles). Then, the subspaces are discretized into a set of 
points on which piecewise linear polynomial interpolation is 
used. In summary, this method is a process for producing an 
optimal piecewise interpolant to the true solution. Finite 
element methods are discussed in much greater detail in [6].  

C. Element Types 
Since discretization methods are dependent on the geometry 

of the mesh, a variety of meshes composed of different element 
types were used for 2-D and 3-D simulations. For 2-D 
simulations, quad, quad-diagonal, and randomized triangular 
meshing schemes were used (Fig.1). For the generation of 3-D 
meshes, tetrahedron and hexahedron (brick) element types 
were used. 

D. Physical Models 
A variety of physical models are implemented in the 

simulation tool. For mobility, the simulation models used are 
the Philips mobility, Lombardi mobility, and velocity 
saturation models. The Philips unified mobility model unifies 

the description of majority and minority carrier bulk mobilities 
and takes into account carrier-carrier scattering, screening of 
ionized impurities, and clustering of impurities [7]. The 
Lombardi model is a function of surface acoustic phonon 
scattering and surface roughness scattering [8]. For 
recombination-generation the Shockley-Read-Hall (SRH) and 
Auger band-to-band models were used. The physical models 
were divided into two sets for the simulations so that the 
discretization methods could be tested under different 
circumstances (Table 1). In addition, this comparison will show 
the impact of electric field dependent models such as Lombardi 
mobility and velocity saturation.  

TABLE I.  PHYSICAL MODEL SETS  

Model Set Physical Models 

Simple  Constant Mobility (µn,p  = 150 cm2/V·s) 

Advanced  
Philips Mobility, Lombardi Mobility, Velocity 
Saturation, SRH & Auger Recombination  

 

III. TEST CASES AND RESULTS 
Both FVSG and FEQF methods were compared for a 

variety of mesh element types and device structures. 
Additionally, the x-, y-, z-axis grid spacings were varied since 
smaller spacings give a more accurate result but require more 
computation time. The assembly time, linear solve time, and 
number of Newton iteration steps were measured for each 
simulation. 

A. Short-Channel MOSFET Simulations 
For a baseline comparison, a common MOSFET device 

was simulated to compare the FVSG and FEQF methods. A 
simple short-channel nMOSFET device with a 40nm gate and 
Gaussian doping profiles in the source/drain was created as a 
template.  

For 2-D nMOS simulations, the FVSG and FEQF methods 
performed very similarly in terms of output current and number 
of Newton steps required for convergence. For rectangular and 
quad-diagonal mesh elements, both methods gave similar 
nMOS ION currents at very tight grid spacings (Fig. 2). The  
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Figure 3. Percent change in solution time per Newton step for the FEQF when 
compared to the FVSG (black baseline). Based on the nMOS template with 

quad-diagonal elements and advanced physical models. 

currents began to vary as the grid spacings increased above 1 
nm, though both methods followed a similar trend. The 
assembly time for the FEQF approach was longer than the 
FVSG, and on average resulted in a ~22% increase in total 
solution time per Newton step (Fig. 3). The time increase is 
due to the fact that in the FVSG method, each edge is 
assembled once whereas for the FEQF method assembly is 
done element by element. Thus for the FEQF scheme, each 
edge is effectively assembled twice. The results from the 
advanced and simple model sets followed same assembly time 
trend. 

An interesting difference between methods occurred when 
the mesh element nodes were displaced as a test of non-ideal 
mesh conditions. With the exception of the gate oxide channel 
interface and outside boundaries, each node inside the nMOS 
was randomly displaced by up to 40% of the initial grid 
spacing. The randomization of the grid created a large number 
of negative edge couplings which implies non-Delaunay mesh 
elements throughout the structure. The negative coupling 
values were not zeroed out. For 2-D, the non-Delaunay 
conditions were created by randomizing quad-diagonal nodes. 
Non-Delaunay conditions in 3-D simulations were created 
using tetrahedron element types. Using the default nMOS 
structure (normal ideal grid) as a baseline, the results for both 
FEQF and FVSG methods were compared against equivalent 
structures with randomly displaced nodes. For both 2-D and 3-
D simulations, the FEQF method performed very accurately in 
terms of ION for both normal and randomized grids (Fig. 4). 
However, the ION results for the FVSG method deviated by a 
large amount, especially at small grid spacings. As the node 
randomization was reduced, the FVSG method increased in 
accuracy. 

When using the FVSG method, solution convergence was a 
problem for the 3-D nMOS device simulations if non-Delaunay 
elements were predominant. For both tetrahedra and bricks, if 
the mesh elements under the MOS gate were too flat (> 5:1 
width:depth ratio) the FVSG solution would not converge. The 
FEQF method did not have trouble converging with this ratio.  

 
Figure 4. The FVSG method loses accuracy for highly non-Delaunay mesh 
conditions in the nMOS channel. The FEQF method is less affected by the 

non-ideal mesh conditions. Average based on 10 simulations per grid spacing. 

 

B. Charge Collection Simulations 
The simulation of ionizing-radiation-induced charge 

collection and single-event upset (SEU) is a growing area of 
device simulation since sensitivity to SEU is expected to 
increase for both in memories and core logic. By extrapolating 
scaling effects, some studies predict an increase in soft error 
susceptibility of ~40% per technology generation [9].  

A reversed biased pn diode was used as a good 
representation of the source/drain junctions that are responsible 
for charge collection in MOSFETs. A charge collection 
simulation was performed in 3-D since in 2-D, all quantities are 
assumed to be extruded into the third dimension which leads to 
a misrepresentation of the charge density. A 3-D pn diode was 
created as a template and tested with both tetrahedra and brick 
elements. A charge cloud was generated into the depth of the 
device to model the electron-hole pairs that are generated 
during a particle strike.  

Both methods converged well for DC bias conditions. 
However, the simulation results show that the FEQF method 
converged more reliably in the transient domain than the FVSG 
method for different mesh spacings and charge concentrations. 
This could imply that the FEQF scheme handles isotropic 
current flow with more stability. This explanation is 
substantiated by the numerical stability problems that have 
been observed in the past for 3-D FVSG charge collection 
simulations [10]. In terms of mesh element types, both the 
FVSG and FEQF methods converged better for bricks than for 
tetrahedra, especially at high charge concentrations.  

Another major difference between discretization methods 
was noticed in their transient simulation times. The FVSG 
required more Newton steps for every solution time step than 
the FEQF method. Even though the assembly time for the 
FEQF method is ~22% longer, the total simulation time, on 
average, for a charge collection transient was less than that of 
the FVSG method (Fig. 5). Because detailed charge collection  
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Figure 5. Normalized average total transient simulation time. The average was 
taken over 15 simulations each with difference charge concentrations. 

 
simulations in 3-D often take a day or more to complete, this 
time savings could be quite significant.   

IV. CONCLUSION 
For the short channel nMOS simulations, both the FVSG 

and FEQF methods gave agreeing ION results over a variety of 
grid spacings and element types. However, for a MOSFET grid 
with a non-ideal mesh (non-Delaunay elements), the FVSG 
method is prone to inaccuracy suggesting a high sensitivity to 
mesh alignment at channel interfaces. Based on these results, 
the FEQF approach would most likely provide more accurate 
results for rough or curved interfaces or situations where 
meshing is non-ideal. However, the FEQF method has the 
disadvantage of a longer DC simulation time due to a longer 
assembly time. For 3-D charge collection simulations, the 
FEQF method outperformed the FVSG approach due to a 
higher convergence rate which may be due to a better handling 
of isotropic current flow.  The total transient simulation time 
was also less for the FEQF method. 

 

 

 

Even though the FVSG method is by far the most accepted 
discretization scheme in practice today, the simulation results 
presented in this paper indicate that the finite element quasi-
Fermi discretization approach is a viable and in some cases 
preferable alternative which should not be overlooked. 
Building on these results, future avenues of study could include 
other previously suggested discretization schemes such as 
Slotboom variable or log(n, p) variable based approaches [11]. 
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