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Abstract—For deterministic multisubband device simulations
of double gate PMOSFETs, which are based on the self-consistent
solution of Poisson-, �k ·�p Schrödinger-, and Boltzmann transport
equation, a new convergence enhancement method has been de-
veloped. The new approach is based on a Newton approach which
considers the coupling between the Poisson equation and the
Boltzmann transport equation. First order perturbation theory
of the Schrödinger equation is employed for the calculation
of the derivative of the Boltzmann transport equation w.r.t
the electrostatic potential. The simulation results show that the
new approach is efficient for both near-equilibrium and non-
equilibrium situations.

I. INTRODUCTION

Multisubband device simulations for strained double gate
PMOSFETs including magnetotransport have been published
recently [1]. The Boltzmann transport equation (BTE) is
solved by a deterministic (non Monte-Carlo) approach based
on the Fourier expansion of the distribution function in the
2D �k-space [1], [2]. In [1] the system of the 1D 6 × 6
�k · �p Schrödinger equation (SE), 2D Poisson equation (PE)
and BTE within each subband is solved successively with
a nonlinear relaxation scheme comparable to the classical
Gummel loop until a self-consistent solution is obtained. This
approach converges linearly with simulation time similar to
the Gummel loops in the classical drift-diffusion based TCAD
device simulators [3], [4], and thus much faster than a MC
algorithm with its square root dependence [5]. In addition, it
yields a truly stationary solution. Because the total CPU time is
mainly dominated by the SE solver, it requires a new approach
to reduce the number of Gummel type iteration steps.

II. CONVERGENCE ENHANCEMENT METHOD

In this work, the convergence of the Gummel type iteration
scheme in [1] is further enhanced by solving simultaneously
the BTE and PE with a Newton approach. Self-consistency
with the SE is again obtained by a Gummel type nonlinear
relaxation scheme. The new approach converges faster than
the previous nonlinear relaxation scheme because solving BTE
and PE simultaneously by the Newton approach takes already
care of the predominant part of the coupling between these
equations.

The multisubband BTE does not depend explicitly on the
electrostatic potential V (solution of the PE). In order to
capture most of the coupling between the BTE and PE the
variation of the total subband energy appearing in the BTE
is evaluated in terms of the variation of V between Newton
iteration steps n and n+1 by applying first order perturbation
theory to the 6 × 6 �k · �p eigen problem. The variation
of subband kinetic energy (structure of the 2D �k-space) is
neglected and the variation of the total subband energy is
further approximated such that it does not depend on the
subband index. Using this approximation the derivative of the
scattering integral w.r.t. V vanishes. The derivative of the BTE
w.r.t V is therefore simple and involves only the drift term
of the BTE. In the following the details of the method are
described.

The coupled system of PE and BTE which is intended to
be solved by a Newton-Raphson iteration scheme is written
as:

FPE(V (x, z), gν
m(x, ε̃)) = 0 (1)

FBTE(V (x, z), gν
m(x, ε̃)) = 0 (2)

where x, z are the positions along the transport and quanti-
zation directions, respectively. Here ε̃ is the kinetic subband
energy, V the electrostatic potential, and gν

m the Fourier ex-
pansion coefficient of order m for the generalized distribution
function belonging to subband ν.

For the Newton-Raphson iteration step (n + 1), the V and
gν

m corrections, denoted as δV and δgν
m, are the solution of

the coupled system of equations:

−F
(n)
PE =

∂FPE

∂V (x, z)
δV (x, z) +

∂FPE

∂gν
m(x, ε̃)

δgν
m(x, ε̃) (3)

−F
(n)
BTE =

∂FBTE

∂V (x, z)
δV (x, z) +

∂FBTE

∂gν
m(x, ε̃)

δgν
m(x, ε̃) (4)

using a Taylor series expansion of (1) and (2) up to first order.
As soon as the solutions δV and δgν

m are available, the
unknowns of the system (1) and (2) can be updated:

V (n+1)(x, z) = V (n)(x, z) + δV (x, z) (5)

gν(n+1)
m (x, ε̃) = gν(n)

m (x, ε̃) + δgν
m(x, ε̃) (6)
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With the updated V and gν
m, the correction procedure is

repeated for the next iteration step. The iteration converges
when the corrections |δV | and |δgν

m| get smaller than a preset
criterion.

Except ∂FBTE
∂V (x,z) , the derivatives appearing in (3) and (4) can

be calculated in a straightforward manner. A direct calculation
of ∂FBTE

∂V (x,z) is impossible because the multisubband BTE does
not depend explicitly on V . Actually the electrostatic potential
V entering the 6 × 6 �k · �p Schrödinger eigen problem is
captured by the multisubband BTE implicitly through the
total subband energy, which is the eigen energy of the eigen
problem. In order to obtain an explicit coupling between
BTE and PE, the variation of the total subband energy
δεν(x,�k) ≡ εν,(n+1)(x,�k)− εν,(n)(x,�k) is evaluated in terms
of the variation of the electrostatic potential δV (x, z) using
first order perturbation theory (here �k is the wave vector in
the 2D �k-space).

The perturbed Hamiltonian is given by the variation of the
electrostatic potential, and the variation of the eigen energy
between iteration n+1 and n can be determined by first order
perturbation theory:

δεν(x,�k) =
∫

�ζν†(x, z,�k)δV (x, z)�ζν(x, z,�k)dz

=
∫

Pν(x, z,�k)δV (x, z)dz (7)

The wave function �ζ (the eigen vector of the eigen problem)
is assumed to be unchanged during the Newton-Raphson it-
eration process. Consequently the probability density function
P = �ζ†�ζ is the same for all Newton-Raphson iteration steps.

In order to simplify the derivative w.r.t V of the scattering
integral of the multisubband BTE, δεν(x,�k) is further approx-
imated so that it does not depend on the subband index or
wave vector. Multiplying the aforementioned δεν(x,�k) with
the distribution function fν,(n)(x,�k) and then integrating over
�k-space and summing over all subband indices gives:
∑

ν

1
(2π)2

∫
δεν(x,�k)fν,(n)(x,�k)d2k

=
∑

ν

1
(2π)2

∫ ∫
Pν(x, z,�k)δV (x, z)dzfν,(n)(x,�k)d2k

=
∫

δV (x, z)p(n)(x, z)dz (8)

where p(n)(x, z) is the hole density after iteration step n given
by:

p(n)(x, z) =
∑

ν

1
(2π)2

∫
Pν(x, z,�k)fν,(n)(x,�k)d2k (9)

The total subband energy is decomposed into a potential
subband energy εpot and a kinetic subband energy ε̃ as follows
[6]:

εν(x,�k) = εν
pot(x) + ε̃ν(x,�k) (10)

fulfilling ε̃ν(x,�k = �0) = 0 for all position x along the
transport direction. If the total subband energy variation is

assumed to be dominated by the variation of the subband
potential energy δεν

pot(x), which in turn is assumed to be the
same for all subbands:

δε̃ν(x,�k) ≈ 0 (11)

δεν
pot(x) ≈ δεpot(x) (12)

then the LHS of (8) can be simplified:
∑

ν

1
(2π)2

∫
δεν(x,�k)fν,(n)(x,�k)d2k

≈ δεpot(x)
∑

ν

1
(2π)2

∫
fν,(n)(x,�k)d2k

= δεpot(x)
∫

p(n)(x, z)dz (13)

The final equality in (13) is obtained directly from (9) with∫ Pν(x, z,�k)dz = 1.
Thus the variation of the potential energy, which does not

depend on the subband index, is obtained:

δεpot(x) =

∫
δV (x, z)p(n)(x, z)dz
∫

p(n)(x, z)dz

(14)

With (11) and (14) the derivative w.r.t V of the drift operator
(LHS of multisubband BTE) can be evaluated. Moreover, the
derivative of the drift operator using (11) and (14) is much
simpler than the calculation based on (7), which depends on
the subband index and wave vector.

The derivative w.r.t V of the scattering integral (the RHS of
multisubband BTE) involves only the derivative w.r.t V of the
kinetic subband energy of the initial and final states in Fermi’s
Golden Rule [7], [8]:

ε̃ν′
(x,�k′) + εν′

pot(x) = ε̃ν(x,�k) + εν
pot(x) ∓ Δεtrans. (15)

Here Δεtrans. is the transfer energy due to scattering (e.g.
optical phonon energy). The variations of the initial and final
energies cancel each other

δεν
pot(x) = δεν′

pot(x) (16)

in the energy conserving delta function of Fermi’s Golden
Rule due to approximation (12). Therefore the derivative of
the scattering integral w.r.t V vanishes.

III. RESULTS

A 16nm gate length Si double gate PMOSFET is simulated.
The Si body and oxide thicknesses of the double gate structure
are 5nm and 0.7nm, respectively. (001) wafer surface and
[110] channel orientation are considered. Scattering due to
phonons and surface roughness is included. More details about
the scattering model can be found in [9], [2]. A constant
lattice temperature of 300K is assumed. The work function
was chosen such that the threshold voltage is about 0.18V. The
simulations are preformed for both near- and none-equilibrium
transport.
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Fig. 1. Convergence of BTE-PE Newton method (top) and of the BTE-PE-SE
Gummel loops (bottom). VGS = −0.7V, VDS = −1mV.
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Fig. 2. Self-consistent hole density within the device. x is the transport
direction and z is the quantization direction. VGS = −0.7V, VDS = −1mV.
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Fig. 3. Convergence of the BTE-PE Newton method (top) and of the BTE-
PE-SE Gummel loops (bottom). VGS = VDS = −0.7V.
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Fig. 4. Self-consistent solution of the hole sheet charge and the drift velocity
along the transport direction x. VGS = VDS = −0.7V.
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For VGS = −0.7V and VDS = −1mV (near equilibrium),
the convergence of the Newton approach for the BTE-PE sub-
system and the convergence of the outer Gummel type loops
for the BTE-PE-SE system are shown in Fig. 1. The typical
quadratic convergence of a Newton approach is visible in Fig.
1 (top). Fig. 1 (bottom) shows clearly that the introduction
of the Newton approach improves the convergence speed of
the nonlinear relaxation loops very much. In order to achieve
an electrostatic potential correction of 10−7kT/q, the new
approach requires only 24 Gummel type iteration steps instead
of 39 needed by the old relaxation method. The CPU time per
iteration, which is dominated by the SE solver, is nearly the
same for the old and the new nonlinear relaxation scheme. The
hole density (Fig. 2) within the device evaluated by the self-
consistent solution of the BTE-PE-SE system clearly shows
that the size quantization is considered not only for the channel
region but also for the source and drain regions.

Similar to Fig. 1, Fig. 3 again shows the convergence of the
Newton method and the convergence of the outer Gummel type
loops with and without the new Newton step for a high drain
bias typically used for ION calculations. The quadratic behav-
ior of potential and distribution function corrections during the
Newton process is again observable. Moreover the enormous
convergence enhancement of the nonlinear relaxation scheme
due to the new approach is again observable for this strong
non-equilibrium condition. Self-consistent solutions for the
hole sheet charge and the drift velocity along the channel are
shown in Fig. 4.

IV. CONCLUSION

A new convergence enhancement method for deterministic
multisubband device simulations has been developed. The new
approach is based on a Newton approach which considers
for the first time the coupling between the PE and the BTE
introduced by the subband structure within a realistic device in
a highly efficient manner. The new method reduces the number
of Gummel type iteration steps and consequently the CPU
time for achieving a self-consistent solution of high accuracy
by about a factor of 2. The new approach is efficient for both
near-equilibrium and non-equilibrium situations.
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