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Abstract—Noise performance of a double-gate MOSFET is in-
vestigated by deterministic simulation of the Boltzmann equation.
The fully-coupled scheme of the Boltzmann equation and Poisson
equation enables both, rapid convergence of the Newton-Raphson
method and noise analysis. In contrast to Monte Carlo noise
simulation, it is possible to determine the spatial origin of the
terminal current noise. It is confirmed that the larger part of the
terminal current noise stems from the source side.

I. INTRODUCTION

The double-gate (DG) MOSFET (or FinFET) has attracted
much attention in the past years. Since noise could be a
limiting factor of the DG MOSFET for both analog and
digital applications, an accurate method to evaluate the noise
performance of this device is required. In this work, the noise
performance of DG MOSFETs is investigated by using a
deterministic Boltzmann equation solver.

II. MODEL

A Boltzmann solver based on the spherical harmonics ex-
pansion of the electron distribution function in the momentum-
space [1] has been developed. Electron transport is based
on the nonparabolic six valley band structure and phonon
mechanisms developed by the Modena group [2]. In this
work, the quantization of carrier motion perpendicular to the
interface is not taken into account. In order to account for
inversion-layer transport, additional scattering mechanisms are
included in the simulation [3], and the parameters for those
scattering processes are matched to the Lombardi mobility
model [4].

Numerical performance of the Boltzmann solver heavily de-
pends on the discretization scheme. In this work, the so-called
“H-transformation,” where balance equations derived from the
Boltzmann equation by expanding with spherical harmonics
are formulated in the total energy space, is employed in order
to obtain a stable discretization scheme [1]. Since the resultant
equations do not contain the partial derivative with respect to
the total energy, it can be easily stabilized by introducing the
direct/adjoint (dual) grid scheme [5]. One obvious strength of
the H-transformation over the discretization scheme based on
the kinetic energy is that the free-streaming operator can be
treated correctly even in the ballistic limit.

However, the stable scheme becomes possible only at a
certain cost. From its definition, the total energy grid must be
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Fig. 1. Structure of the simulated double-gate (DG) NMOSFET.

aligned with the electrostatic potential. We consider the de-
tailed dependence of the density-of-states, the electron veloc-
ity, and the scattering rate on the electric potential. Using this
fully-coupled scheme, rapid convergence can be obtained by
the Newton-Raphson method, in contrast to previous Gummel-
type attempts [1], [3].

For the small-signal Jacobian matrix, the linearized Boltz-
mann equation is built upon the steady-state total energy
[6]. As a result, the fluctuating electric potential introduces
additional coupling between two discretized nodes with differ-
ent total energy. The Green’s function for the terminal noise
current can be obtained by a solution of the corresponding
adjoint system of equations. Noise simulation is performed in
the way described in [7].

III. SIMULATION RESULTS

In Fig. 1 the structure of the simulated DG MOSFET [8]
is shown. The length of the metal gate is 70 nm. The oxide
thickness is 1.3 nm and the metallurgical channel length 50
nm. The body of the DG MOSFET is 20 nm thick. A uniform
energy grid with 5 meV spacing is adopted in the following
simulations. The maximum order of spherical harmonics is 3.

Fig. 2 shows the zeroth order component (an average over
the solid angle) of the electron distribution function for the
valleys for which the longitudinal mass in k-space is parallel
to the x-axis. The value at the interface is presented. Note
that the “energy” in the figure represents the total energy. The
distribution function can be simulated over several orders of
magnitude without problems. The distribution function at the
drain contact consists of two parts, a large number of electrons
close to equilibrium at lower energy and the injected electrons
from the source contact at higher energy. Also near the drain
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Fig. 2. Electron distribution function at VGS = 0.9 V and VDS = 0.9 V.
The value at the interface is shown.
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Fig. 3. Longitudinal electron velocity averaged perpendicular to the channel
direction at VDS = 0.9 V.

end of the channel, energy dissipation by the dominant phonon
mode is clearly visible.

Fig. 3 shows the longitudinal electron velocity profile. The
lateral position of the middle of the channel is denoted as zero.
Velocity overshoot, where the peak velocity is twice as large
as the saturation velocity of silicon, is observed.

Since small-signal analysis is available, Y -parameters can
be calculated in a straightforward manner, and hence the
small-signal current gain. Fig. 4 shows the cutoff frequency
extrapolated from the small-signal current gain at 10 GHz as
a function of VGS . The peak cutoff frequency is about 220
GHz.

Fig. 5 shows the spectral intensities of the terminal current
noise as a function of VGS at 10 GHz. The absolute value is
shown for SIGID

. SIGIG
and SIGID

, which are a few orders
of magnitude smaller than SIDID

, can be evaluated without
numerical problems. Fig. 6 shows the spectral intensity of
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Fig. 4. Cutoff frequency at VDS = 0.9 V. The peak cutoff frequency is about
220 GHz.
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Fig. 5. Spectral intensities of the terminal current noise as a function of
VGS at VDS = 0.9 V and 10 GHz. Absolute value is shown for SIGID

.

the drain current noise as a function of VDS at 10 GHz. It
increses monotonically, when VDS increases. This behavior
significantly deviates from the one predicted in the long-
channel limit [9].

There have been many discussions about the contribution of
hot carriers to the terminal current noise (e.g. [10]). Although
by HD simulations [8] it was shown that the contribution from
the source side is the dominant part in the drain noise, the
confirmation with a Boltzmann equation solver is still lacking.
Since the transfer functions from the local noise source to
the observed output variable are available, it is possible to
determine the spatial origin of the terminal current noise.

Fig. 7 shows the zeroth order component of the drain current
Green’s function for two different energies. For the low energy
the Green’s function is clearly determined by the channel
barrier. On the other hand, for the high energy the transition
region of the Green’s function broadens. Even for electrons
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Fig. 6. Spectral intensity of the drain current noise as a function of VDS at
VGS = 0.9 V and 10 GHz. The model value in the long-channel limit [9] is
also shown for comparison.
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Fig. 7. Drain current Green’s function for two different energies above the
channel barrier at VGS = 0.3 V, VDS = 0.9 V, and 10 GHz. The real part at
the interface is shown.

injected at the source region, there remains a small probability
(about 8 %) to overcome the barrier and eventually to arrive
the drain contact.

Figs. 8 and 9 show the spatial origin of the drain current
noise and gate current noise, respectively. The larger part of
the terminal current noise stems from the source side. This
information is not available from the Monte Carlo method.
Peaks around the metallurgical junctions are due to abrupt
changes in the doping profile.

Since both, the Y -parameters and the spectral intensities
of the terminal currents are available, it is straightforward
to extract useful circuit parameters. Fig. 10 shows α and β
parameters defined as [11]

α =
SIDID

4kBT |Y21| ,
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Fig. 8. Local contribution to the drain current noise integrated perpendicular
to the channel direction at VGS = 0.9 V, VDS = 0.9 V, and 10 GHz.
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Fig. 9. Local contribution to the gate current noise integrated perpendicular
to the channel direction at VGS = 0.9 V, VDS = 0.9 V, and 10 GHz.

β =
SIGIG

|Y21|
4kBT |Y11|2 ,

respectively.
Another quantity of interest is the correlation factor of the

gate/drain current noise,

c =
SIGID√

SIGIG
SIDID

.

In the long channel limit [11], its imaginary part is about 0.4.
The gate/drain correlation factor is shown in Fig. 11.

Since the cutoff frequency is as high as 220 GHz, the
minimum noise figure of the device-under-simulation can be
very low. The minimum noise figure is shown in Fig. 12. At
10 GHz, the minimum noise figure for VGS = 0.3 V and VDS

= 0.9 V is as low as 0.1 dB.
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Fig. 10. Results for α and β as a function of VGS at VDS = 0.9 V and 10
GHz.
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Fig. 11. Imaginary part of the gate/drain correlation factor as a function of
VGS at VDS = 0.9 V and 10 GHz.

IV. CONCLUSION

In conclusion, we have implemented a deterministic Boltz-
mann solver based on the H-transformation. In contrast to the
previous attempts, the fluctuations due to the change of the
electric potential are considered exactly. This feature enables
both, rapid convergence of the Newton-Raphson method and
noise analysis.

As an numerical example, the noise performance of a DG
MOSFET is investigated. From the simulation results, it is
confirmed that the larger part of the terminal current noise
stems from the source side.
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Fig. 12. Minimum noise figure as a function of VGS at VDS = 0.9 V and
frequencies 10 and 100 GHz.
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