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Abstract—We use the stochastic linearized Poisson-Boltzmann
equation to model the fluctuations in nanowire field-effect biosen-
sors due to changes in the orientation of the biomolecules. Dif-
ferent orientations of the biomolecules with respect to the sensor
surface due to Brownian motion have different probabilities.
The probabilities of the orientations are calculated from their
electrostatic free energy. The structure considered here is a cross
section through a rectangular silicon nanowire lying on a an
oxide surface with a back-gate contact. The oxide surface of the
nanowire is functionalized by biomolecules in an electrolyte with
an electrode. Various combinations of PNA (peptide nucleic acid),
single-stranded DNA, and double-stranded DNA are simulated to
discuss the various states of a DNA sensor. A charge-transport
models yields the current through the transducer that compares
well with measurements.

I. INTRODUCTION

Affinity-based field-effect nano-biosensors have been
demonstrated experimentally [1]–[3]. Their working principle
is that the oxide surface of a silicon nanowire is functionalized
by receptor molecules. As analyte molecules bind to the
receptors at the surface in an aqueous solution, the analyte
molecules change the charge concentration in the biofunction-
alized boundary layer (see Fig. 1). This, in turn, results in a
change of the conductance of the nanowire transducer that can
be measured. The sensors are selective, since only matching
molecules can bind to the receptor molecules at the surface.
The sensors are sensitive, since the amount of conductance
change yields quantitative information about the biomolecules
at the surface. The main advantage of this technology is label-
free operation, whereas currently employed technology works
by labeling the analyte molecules.

Despite recent advances in their theoretic understanding [4]–
[7], many questions about the physics of the sensors remain
open.

In this work we introduce a PDE-based model for fluctu-
ations or noise in these biosensors; more precisely, we use
a stochastic PDE for the electric potential in biosensors. The
model can also be applied to similar structures and to other
sources of noise. Our aim is to investigate how the stochastic
charge concentrations in the boundary layer influence the
current through the transducer.

In actual biosensors, the charge concentration at the trans-
ducer surface is a probability distribution, i.e., it depends
on a random variable. The randomness is due to binding
and unbinding events of analyte molecules depending on the
binding efficiency of receptor and target molecules and it is
due to changes in the orientation of the biomolecules with
respect to the surface (Brownian motion).

II. THE STOCHASTIC LINEARIZED POISSON-BOLTZMANN

EQUATION

The model for the electric potential φ in the biosensor used
here is the stochastic linearized Poisson-Boltzmann equation

Lφ(x, ω) = ρ(x, ω), (1)

where ω is a random variable, φ(x, ω) is the electric potential,
and L is the linear differential operator

L := −∇ · (A(x)∇) + γ(x),

where A(x) is the permittivity. The right-hand side

ρ(x, ω) := ρf (x, ω) + α(x)

includes the fixed charge concentration ρf (x, ω). The terms
α(x) and γ(x) on the right-hand sides stem from linearization.
This most general form of the Poisson-Boltzmann equation is
derived from a Boltzmann distribution with Fermi level φF for
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Fig. 1. Schematic diagram of the cross section of the nanowire field-effect
biosensor considered in this work.

the mobile charges in the electrolyte in the Poisson equation
and linearization by Taylor expansion around φ0. This gives

α(x) := 2c(x)q sinh
q(φF − φ0)

kBT

+
2c(x)q2φ0

kBT
cosh

q(φF − φ0)
kBT

,

γ(x) :=
2c(x)q2

kBT
cosh

q(φF − φ0)
kBT

,

where c(x) is the bulk concentration of the ions, q is the
elementary charge, kB is the Boltzmann constant, and T is
the temperature.

To understand the fluctuations of the electric potential and
therefore the noise arising from the random charge concen-
tration, it is necessary to calculate its expectation Eφ and
its variance σ2φ. The expectation is treated more easily than
the variance. Since the linear operator L and the expectation
operator E commute at least formally, i.e.,

ELφ(x, ω) = LEφ(x, ω),

the expectation Eφ is the solution of the equation

LEφ(x, ω) = Eρ(x, ω).

This equation has the same form as (1).
To simplify the analysis, we define the shifted charge

concentration ρ̃ and the shifted potential φ̃ as

ρ̃ := ρ − Eρ,

φ̃ := φ − Eφ,

so that Eρ̃ = 0, Eφ̃ = 0, and

Lφ̃ = ρ̃

hold.
A simple calculation using the definition of the variance

shows that
σ2φ = σ2φ̃

holds for the variance of the potential and of the shifted
potential.

III. RESULTS FROM HOMOGENIZATION AND

A SCALING LAW

A question that arises naturally is: how does the size of
the fluctuations scale with the size of the biomolecules? Do
smaller biomolecules in the functionalized boundary layer
result in less fluctuations and by how much? To answer this
question, we now summarize a result leading to a scaling law
for the variance and covariance. The proofs and the details
will be published elsewhere.

The physical situation we consider is a three-dimensional
nanowire sensor structure. The boundary layer at the oxide
surface is partitioned into boxes that contain different charge
concentrations representing different molecules and different
orientations. The coordinate system is locally so that x1 is
normal to the surface and x2 and x3 are parallel to the
surface. For each cell k, there is a random variable ωk and
its different states can correspond to different molecules and
different orientations and combinations thereof. The random
variable ω is defined by

ω := (ω1, . . . , ωK),

the charge concentration of cell k is denoted by ρk(x, ωk),
and we write the cumulative charge concentration as

ρ(x, ω) =
∑

k

χk(x)ρk(x, ωk),

where χk(x) is the characteristic function of cell k.
The main result is the following. Here ε is the zoom factor

between slow and fast variables, i.e., it is the ratio between
the size of a box and the whole domain.

Theorem. The covariance cov(φ̃) is the solution of the equa-
tion

LξLx cov(φ̃)(x, ξ) = ε4δ(x1, ξ1, ξ2 − x2, ξ3 − x3) ·
·
∫

Ω(x2,x3)

R
(
ω(x2, x3)

)2dω(x2, x3),

where

R(ωk) :=
∫ ∞

0

∫ 1

0

∫ 1

0

ρ̃(y1, y2, y3, ωk)dy3dy2dy1.

Here Lξ and Lx are the differential operator L with respect
to the ξ and x variables, respectively.

This homogenization result immediately yields this corol-
lary.
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Corollary. The covariance cov(φ̃) and the variance scale as
ε4 for ε → 0.

This result answers the question posed above. Since ε is the
spatial ratio between the size of (a box containing) a molecule
to the size of the whole simulation domain, it means that
smaller molecules yield much reduced variance or fluctuations:
the variance reduces even as ε4. This means that smaller
molecules can be detected much more efficiently than larger
ones regarding noise due to Brownian motion.

IV. SIMULATION RESULTS

We present simulations results for the nanowire DNA sensor
whose structure is shown in Fig. 1. We consider different
combinations of PNA (peptide nucleic acid) and DNA strands
in the boundary layer. PNA is an uncharged molecule similar
to DNA and it is often used in the functionalization of sensor
surfaces, since PNA and DNA bind very well. In the situations
in Table I, one strand is always the receptor strand and the
second strand is the analyte strand.

Depending on the orientation of the DNA strands with
respect to the surface, the thickness of the molecule layer (red)
is calculated from the double-helix structure of B-DNA and the
same known total charge is distributed uniformly in each case
according to a simple analytical model.

We rotate axes of the PNA and DNA strands with respect to
the surface and consider these different charge concentrations.
The probabilities of the different orientations of ssDNA and
dsDNA are calculated from their electrostatic free energy as in
[8]. Then the orientation i with the electrostatic free energy
Ei is assigned the probability

pi :=
exp(−Ei/(kBT ))∑
i exp(−Ei/(kBT ))

according to a Boltzmann distribution.
Next, we calculate the expectation Eφ and variance σ2φ

(which immediately gives the standard deviation σφ) of the
electric potential in a cross section. A simulation result is
shown in Fig. 2 and Fig. 3. It is observed that the standard
deviation has local maxima at the corners of the molecule
layer. The variance and the standard deviation vanish at the
bulk-gate and electrode contacts due to the Dirichlet boundary
conditions used there. Neumann boundary conditions are used
at the rest of the boundaries.

Finally, we calculate the currents I(Eφ) and I(Eφ ± σφ).
Since σφ � 1, this is a good approximation of the expected
current and its standard deviation. Using the known potential
values φ(x, y) in the cross section, the current through the
transducer is calculated as

I(φ) = niqμpF

∫
exp

(
qφF − qφ(x, y)

kBT

)
dxdy

− niqμnF

∫
exp

(−qφF + qφ(x, y)
kBT

)
dxdy,

where ni is the intrinsic carrier density of the nanowire, μp

and μn are the carrier mobilities, and F = 50mV/1μm is the
electric field in longitudinal direction.
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Fig. 2. Expectation Eφ (top), standard deviation σφ (middle), and variance
σ2φ (bottom) of the electric potential in the cross section of the structure
corresponding to the third row in Table I, i.e., the one with the largest variance.
The x-axis is normal to the oxide substrate and the y-axis is parallel to the
substrate. There are 30nm of oxide substrate, the nanowire has a cross section
of 10nm · 10nm, its doping concentration is 1018q/cm3, its Fermi level is
0.3V, the oxide thickness is 2nm, the surface charge density is 0.2q/nm2,
the molecules are located at 0.5nm from the oxide surface, and the Na+Cl−
concentration is 30mM.
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TABLE I
SIMULATION RESULTS FOR VARIOUS MOLECULES, FOR VARIOUS SPACINGS BETWEEN THE MOLECULES, AND FOR VARIOUS BINDING EFFICIENCIES

BETWEEN RECEPTOR AND TARGET MOLECULES.

Receptor spacing Molecules Current Change

5nm 50% PNA & 50% ssDNA I(Eφ − σφ) = −2.498 · 10−8A −26.78%

I(Eφ) = −3.412 · 10−8A 0 %

I(Eφ + σφ) = −4.659 · 10−8A +36.58%

5nm 100% ssDNA I(Eφ − σφ) = −2.311 · 10−8A −8.020%

I(Eφ) = −2.512 · 10−8A 0 %

I(Eφ + σφ) = −2.731 · 10−8A +8.719%

5nm 50% ssDNA & 50% dsDNA I(Eφ − σφ) = −1.275 · 10−8A −29.27%

I(Eφ) = −1.803 · 10−8A 0 %

I(Eφ + σφ) = −2.549 · 10−8A +41.38%

5nm 100% dsDNA I(Eφ − σφ) = −1.156 · 10−8A −10.67%

I(Eφ) = −1.294 · 10−8A 0 %

I(Eφ + σφ) = −1.449 · 10−8A +11.95%

10nm 100% ssDNA I(Eφ − σφ) = −3.893 · 10−8A −2.068%

I(Eφ) = −3.976 · 10−8A 0 %

I(Eφ + σφ) = −4.060 · 10−8A +2.112%

10nm 100% dsDNA I(Eφ − σφ) = −3.274 · 10−8A −2.782%

I(Eφ) = −3.368 · 10−8A 0 %

I(Eφ + σφ) = −3.464 · 10−8A +2.862%

Table I collects simulation results for different boundary
layers where 12-mers of PNA (uncharged), single-stranded
DNA (ssDNA), and double-stranded DNA (dsDNA) are present
with different probabilities due to different molecule concen-
trations in the liquid. The first two rows are the results for
ssDNA detection by PNA receptors. In the first row, 50% of
the receptors are bound to ssDNA strands that are detected.
In the second row, 100% of the receptors are bound to
ssDNA strands. These numbers show that a higher binding
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Fig. 3. Expectation Eφ (middle curve) and expectation plus/minus stan-
dard deviation Eφ ± σφ (top and bottom curves) of the electric potential
corresponding to Fig. 2 through the middle of the structure at y = 15nm.

efficiency of target ssDNA to receptor PNA decreases noise
significantly. Put differently, if the concentration of analyte or
target molecules in the liquid and thus at the sensor surface is
higher, the noise is less.

In the third row, ssDNA strands are detected by ssDNA

receptors and 50% of the receptors are bound to target strands.
In the fourth row, 100% of the receptors are bound. The third
and fourth row show again that noise is less at the 100%
binding efficiency level compared to the 50% level. Compared
to the first and second row, there is slightly more noise when
ssDNA receptors are used for ssDNA detection (third and fourth
row) than when PNA receptors are used (first and second row).

In the last two rows, the spacing between the molecules was
increased from 5nm to 10nm. Here we compare the current for
100% ssDNA in the fifth row to the current for 100% dsDNA

in the sixth row. A comparison between the second and the
fifth row and a comparison between the fourth and the sixth
row shows that the noise level is reduced by approximately a
factor of 4 as expected.

V. CONCLUSION

We have developed a PDE-model based on the stochastic
linearized Poisson-Boltzmann equation to calculate fluctua-
tions in nanowire field-effect biosensors. The model can also
be applied to fluctuations due to stochastic effects in charge
concentrations in similar structures as well.

This model makes it possible to calculate the expectation
and standard deviation of the electric potential and of the cur-
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rent in the transducer depending on the probability distribution
of the charge concentration in the functionalized boundary
layer where molecular recognition takes place in affinity-based
sensors.

The computational approach is efficient since it is based on
a linear stochastic PDE. If a Monte Carlo procedure were used,
many more solutions of the Poisson equation would have to
be calculated to just estimate the expectation and variance.
Further computational improvements in the calculation of the
variance and covariance, i.e., in the most time-consuming part,
enable the simulation of larger structures and will be presented
elsewhere.

The simulation results and the published experimental val-
ues are in good agreement. Finally, we also discussed a scaling
law for the variance and covariance as the size of the molecules
in the boundary layer goes to zero.
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