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Abstract—Bipolar transistors in advanced BiCMOS technology
rely on highly-doped SiGeC bases strained on Si. Modeling the
electrical properties of such devices by TCAD means requires an
accurate description of SiGeC transport parameters, including
low-field mobility, saturation velocity and energy relaxation
time. Since bipolar transistor operation involves electron and
hole transport, both types of carriers must be adressed. A
distinction between majority and minority carriers must also
be physically accounted for. In this paper, transport properties
of doped and strained Si1−x−yGexCy alloys are investigated by
Full-Band Monte Carlo (MC) method with a view of deriving
analytical models suitable for implementation in hydrodynamic-
based TCAD simulators.

I. INTRODUCTION

Performance optimization of advanced heterojunction
bipolar transistors (HBTs) has lead to the introduction
of germanium and carbon in the device base, yielding
Si1−x−yGexCy base layers biaxially strained on Si [1]. TCAD
simulation of charge carrier transport in such SiGeC/Si HBTs
should include models for transport parameters relevant to
strained ternary Si1−x−yGexCy alloys. The aim of this work is
to develop analytical models for carrier transport parameters,
namely low-field mobility and energy relaxation time, based
on Monte Carlo simulations of homogeneous transport in
SiGeC alloys.

II. MONTE CARLO METHOD

Our Full-Band Monte Carlo simulations rely on strain-
dependent SiGe Tight-Binding band structures. Phonon scat-
tering rates are wave-vector dependent [2] and include 4
Si-Si modes and 4 Ge-Ge modes (i.e. 8 phonon modes in
SiGeC alloys) [3]. Phonon rates are calibrated to reproduce
a large number of experimental data in bulk Si and Ge,
namely low-field mobility, drift velocity and impact ionization
coefficient measurements [4], [5]. Doping effets are accounted
for using doping-dependent scattering mechanisms, includ-
ing ionized impurity scattering, electron-electron scattering
and electron-hole scattering. Coulombian scattering rates are
derived from partial-wave theory [6], [7] and can thereby
establish a physical distinction between attractive and repulsive
potentials, i.e. between majority and minority carriers (Fig.1).
The Pauli Exclusion Principle (PEP) has to be accounted for

TABLE I
EFFECTIVE ALLOY POTENTIALS EXPRESSED IN eV

a FROM [9], b FROM [10], c FROM [3], d FROM [11], e FROM [12]

REF USi−Ge USi−C
e h e h

Present work 0.4 0.5 2.8 2.2
Litterature 0.7a, 0.54b 0.9a, 0.7c, 0.55d 1.75e –

in simulating highly doped materials. Here PEP is included
using the actual distribution function discretized with a cubic
mesh of the reciprocal space [8]. Eventually our model for
alloy scattering extends the commonly used alloy scattering
rate model specific to binary random alloys (see e.g. [3], [9])
to the more general case of ternary random alloys:

Palloy(x, y,E) =
2π

h̄
Ωc · D(E) ·

h
x(1− x) ·U2Si−Ge

+y(1− y) ·U2Si−C − 2xy ·USi−Ge ·USi−C
i (1)

In (1), USi−Ge and USi−C are effective alloy potentials. As
such they are independently calibrated on several experimental
mobility measurements:
• USi−Ge is adjusted to reproduce the x dependence of

mobility in relaxed Si1−xGex alloys, as depicted in Fig.2;
• USi−C is tuned to reproduce the y dependence of in-plane

mobility in Si1−yCystrained on Si, as shown in Fig.3.
Table I compares the calibrated values of our SiGeC model

with equivalent effective alloy potentials avaible in the litter-
ature, relevant to binary SiGe and SiC alloys. It ought to be
noted that using (1), our model provides a unified formalism
for electrons and holes in strained and relaxed ternary SiGeC.

III. MOBILITY MODEL

A large set of MC simulations have been performed in
highly-doped Si1−x−yGexCy alloys strained on Si. First, we
have derived a new anisotropic analytical mobility model
based on low-field MC simulations. The model should be
valid for materials with up to 2% carbon content and 50%
germanium content. It should also be able to distinguish
between the isotropic relaxed mobility, and the in-plane and
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out-of-plane components of the anisotropic mobility tensor
relevant to SiGeC alloys strained on bulk Si.

In order to account for strain-related effects, we introduce
a strain-compensation parameter z, defined as:

z = y − 0.1071x− 0.0163x2 (2)

z is positive (negative) when the SiGeC alloy is tensily
(compressively) strained on Si and z = 0 when the alloy is
exactly strain-compensated. The alloy composite mobility is
modeled through the introduction of bowing parameters, as
described in Ref.[13]:

1

μ
=
1− x

μSi
+

x

μGe
+

∙
x(1− x)

C0x + xC1x + x2C2x

+
y(1− y)

Cy
− xy

Cxy

¸
1

Cβ(z)

(3)

where the bowing terms Ci
x, Cy and Cxy quantify the degra-

dation of mobility due to alloy scattering. In (3), both μSi

and μGe mobility terms are described using doping-dependent
Caughey-Thomas expressions [14]. All model parameters are
adjusted to obtain an optimal agreement between formula (3)
and MC simulations results.

Figure 4a (4b) shows the behavior of the resulting majority
(minority) electron mobility in SiGe alloys as the doping
concentration is increased. Figures 5a to 5d show the de-
pendence of electron mobility upon C content in intrinsic
biaxially strained SiGeC alloys. This mobility model is seen
to satisfactorily reproduce all effects due to substitutional C,
namely alloy scattering, anisotropy due to biaxial strain, and
strain compensation when Ge is also introduced (arrow in
Fig.5c).

In order to underline the effects of Ge and C contents on
the alloy mobility, it is useful to plot the ratio between SiGeC
mobility and Si mobility:

Rμ =
μ(x, y)

μSi
(4)

The mobility ratio Rμ can be conveniently used to identify
domains of the (x, y) composition spectrum where mobility
enhancements could be expected as compared to Si. In figures
6 and 7, we plot the ratio Rμ for several doping concentrations,
as given by the analytical law (3). The figures show the
isolines of the ratio in the x − y alloy composition space.
Fig.6 relates to electron in-plane mobility, while Fig.7 depicts
hole in-plane mobility. As it can be seen, electron mobility in
strained Si1−x−yGexCy alloys is always lower than mobility
in Si (Rμ < 1), since the beneficial strain effects induced by
lattice mismatch cannot overcome the strong alloy scattering.
However in the case of hole mobility, both those competing
trends, namely alloying and strain, can result in a very
significant mobility enhancement (Rμ > 1), especially when
the SiGeC layer is submitted to a highly compressive biaxial
stress.
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Fig. 1. Mobility as a function of impurity concentration in silicon. MC
simulation results are compared to measurements. Full (open) symbols and
solid (dashed) lines refer to majority (minority) carrier mobility. Experimental
data are taken from Ref.[15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25].
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Fig. 2. Mobility as a function of Ge content in relaxed SiGe alloys. MC
simulation results are compared to measurements. Experimental data are taken
from Ref.[26], [27], [28], [11].
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Fig. 3. In-plane mobility as a function of C content in SiGeC alloys strained
on Si. MC simulation results are compared to measurements. Experimental
data are taken from Ref.[12], [29], [30].
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TABLE II
PARAMETER VALUES FOR THE ENERGY RELAXATION TIME MODEL

CARRIER τ0 τ1 C0
ps ps

e 0.38 0.04 0.18
h 0.36 0.13 0.10

IV. ENERGY RELAXATION TIME MODEL

In a second set of Full-Band MC simulations, high-field
transport properties such as saturation velocities and energy
relaxation times are investigated. The energy relaxation time
is extracted using the indirect method reported in Ref.[31].
During constant-field MC simulations, charge carrier drift
velocity vc and average energy Ec are calculated. The carrier
energy relaxation time is deduced from the 2 aforementioned
pieces of data, according to:

τ =
3kB
2e

× TC − TL
vcF

(5)

where F is the electric field, TL is the lattice temperature, and
the carrier temperature TC is related to the carrier energy Ec

through Ec = 3/2kBTC .
Starting from the MC results, we develop and calibrate an

analytical formula for the carrier energy relaxation time in
Si1−x−yGexCy alloys. It is found that the relaxation time τ
can be efficiently modeled as a function of the ratio between
carrier temperature TC and lattice temperature TL [31]:

τ = (τ0 + τ1x)×
"
1− exp

µ
−C0TC

TL

¶
+

µ
TC
TL

¶−1#
(6)

In (6), the τ1 parameter controls the alloying effect due to Ge
mole fraction x. The dependencies of τ upon C mole fraction
and doping concentration were found to be negligible. Model
parameter values specific to electron and hole transport are
reported in table II.

Figures 8a and 8b show MC results for the electron and
hole energy relaxation time in SiGe alloys, respectively. Also
shown is the analytical model behavior, as expressed in (6). As
it can be seen, the MC-based model significantly improves the
default constant model commonly used in device simulations.

V. CONCLUSION

We have employed a homogeneous Monte Carlo simula-
tion technique to calculate charge carrier transport properties
in ternary Si1−x−yGexCy alloys. All the relevant scattering
mechanisms have been included, and their respective scattering
rates have been modeled consistently with a large number of
experimental measurements. Analytical models for electron
anf hole low-field mobility and energy relaxation time have
been derived from a systematic fitting procedure applied to
Monte Carlo results. Based on the presented analytical TCAD
models, strategy for performance optimization in advanced
bipolar devices with respect to strain and alloying effects
in SiGeC, can be adequately adressed in the early phase of
technology developpement.
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Fig. 4. Combined effects of alloying and doping on electron mobility in
relaxed SiGe alloys. Minority electron mobilities are consistently higher than
majority electron mobilities. Symbols refer to MC simulations, lines represent
our analytical mobility model.
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Fig. 5. Combined effects of alloying and strain on electron mobility
in undoped SiGeC alloys. Biaxial strain due to lattice mismatch induces
the mobility anisotropy. When strain compensation occurs, the anisotropy
vanishes (arrow). Symbols refer to MC simulations, lines represent our
analytical mobility model.
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Fig. 8. Energy relaxation time as a function of carrier temperature in relaxed
SiGe alloys. Symbols refer to MC simulations, solid lines represent our
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