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Abstract—Unlike other treatments of electron tunneling, 
density-gradient theory provides a macroscopic perspective on 
this quantum phenomenon that is grounded in Newton’s 
quintessentially classical 2nd Law.  We demonstrate the meaning 
and legitimacy of this unusual viewpoint through careful 
comparisons with non-equilibrium Green’s function simulations.  
The main errors made by the density-gradient approach are 
shown to arise not from its description of the tunneling but 
rather from its representation of quantum confinement in the 
electrodes.  A new physical understanding of the ad hoc tunneling 
boundary conditions used in previous work is also exhibited.  
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I.  INTRODUCTION 
It is generally regarded as self-evident that theories of 

electron tunneling must be explicitly microscopic, i.e., 
quantum mechanical [1].  The density-gradient (DG) approach 
to tunneling [2,3] claims to contravene this conventional 
wisdom by considering electron tunneling as a macroscopic 
phenomenon, i.e., one acting at the level of populations of 
electrons.   For such an approach to be viable and more than 
curve-fitting, it needs to be founded on general physical 
principles, and when the electrons are incoherent, the only ones 
known are the classical conservation laws.  This means that the 
DG theory of quantum mechanical tunneling is necessarily a 
classical field theory.  The apparent contradiction in this 
statement naturally gives rise to questions about the legitimacy 
and meaning of the DG approach, and these serve as the main 
motivation for the present paper. 

Two aspects of DG theory are most revealing of its 
macroscopic/classical character, namely, its inclusion of 
Newtonian inertia in the main governing equation, and its use 
of boundary conditions to represent rapid variation across 
material interfaces.  Both of these features are examined 
closely in this work.  To do so, we make careful comparisons 
between predictions of DG theory and quantum mechanics for 
transport through one-dimensional barriers in steady state.  The 
comparisons clarify a number of foundational issues, including 
providing new perspective on the roles of electron inertia and 
of screening and scattering in the electrodes.  The analysis also 
reveals the meaning of the ad hoc tunneling boundary 
conditions used in previous work [2,3].  Lastly, from a practical 
standpoint, the DG approach to tunneling is shown to provide 
good accuracy with no additional fitting parameters, and with 
the sources of error reasonably well understood.   

II. DG THEORY 

A. Foundations 
DG theory is a classical field theory [4] that is based on the 

conservation laws of mass/charge and momentum and on 
electrostatics as applied to one or more electron gas continua.  
These basic principles are applied both in the interior of 
electronically conducting materials (resulting in differential 
equations) and across interfaces between such materials 
(resulting in boundary conditions).  As usual, they are also 
supplemented by a set of constitutive equations that specify the 
material response and that make the system determinate.  
Among these equations, and crucial to DG theory, is the 
equation of state describing the electron gas response which  
depends not only on the electron density but also on the 
density-gradient.  The usual form for these dependences is [2] 
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The density-dependent term is the ordinary equation of state 
(usually given a Fermi-Dirac form) and the second term is the 
DG correction accounting for lowest-order quantum effects [5].  

DG theory has been widely and successfully applied to a 
variety of quantum confinement problems [6].  The application 
of this same description to quantum tunneling, although first 
discussed nearly 20 years ago [2], has not been similarly 
accepted [7].  Two reasons for this are (i) the issues of principle 
addressed in this paper, and (ii) the fact that scattering tends to 
be unimportant in tunneling situations so that the DG tunneling 
equations are a generalization not of diffusion-drift theory but 
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Fig. 1. Schematic depicting the macroscopic view of tunneling. 
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rather of the less-familiar ballistic transport theory.  It is hoped 
that the firmer foundation for DG tunneling theory provided by 
the present work will lead to its wider use in engineering-
oriented device simulation.      

B. Differential Equations 
We consider in this paper only 1-D single barrier tunneling 

situations in steady-state.  Because of the lack of scattering 
within the barrier the electron gas traveling left-to-right (with 
density n) does not interact with that traveling right-to-left 
(with density u) and so must be treated separately.   For such a 
situation the governing equations of DG theory for n reduce to 
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where 

! 

s " n .    Inside the barrier there are assumed be no 
generation/recombination processes, and so (2) can be 
integrated; this allows vn to be eliminated as a variable and 
constitutes the main simplification of the 1-D situation.   
Equation (4) is a so-called mechanical energy equation that 
results from a “Bernoulli” integration of Newton’s 2nd law, and 
vn is the (average) electron gas velocity, 
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DG  is a generalized electrochemical potential that is constant 
when scattering is negligible.  From a macroscopic standpoint 
the most interesting aspect of (4) is that the last term on the left 
is the macroscopic kinetic energy (neglected in previous work 
[2,3]), while the first term on the left, which arises from the 
gradient-dependent equation of state in (1), represents 
microscopic kinetic energy contributions [7].  The validity of 
this break-up of the kinetic energy (much like that in a classical 
context in the gas dynamics of a monatomic gas [8]) is a 
central question regarding the DG theory of tunneling and is a 
prime focus of the present paper.  

C. Boundary Conditions 
Because the electrons in the barrier split in two (in 1-D) and 

have directionality, the boundary conditions of DG tunneling 
also split into “upstream” and “downstream” conditions.  The 
upstream conditions are simply continuity conditions, while the 
downstream conditions are a crucial part of the macroscopic 
description of tunneling.  In past work, the first author 
proposed two types of “tunneling recombination velocity 
conditions” to be applied downstream: 
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The justification for these conditions was simply that their use 
gave qualitatively correct results [2,3].  But their origin and 
meaning were never clarified, and formulas for γn and γg were 
never provided.  Addressing these issues is a second main 
motivation and result of the present paper. 

In understanding the downstream BCs it is important to 
distinguish between “evanescence” and “tunneling”.  
Evanescence (as we define it) is simply the phenomenon of 

barrier penetration that allows electrons to traverse the barrier 
and enter the downstream electrode as “minority” carriers (see 
Fig. 1).  Evanescence produces no current.  Tunneling instead 
is when the process of evanescence is completed by capture of 
the minority carriers by the downstream electrode and 
subsequently an subsequent conversion into “majority” 
carriers.  Clearly, in order to model barrier tunneling our 
treatment of the downstream electrode  —  with BCs and 
possibly also differential equations  —  must represent this 
capture physics.  Two versions are considered:     

Elastic capture: Because the density of final states is 
generally much greater than the minority carrier density, for a 
simplest model it seems reasonable to suppose that all carriers 
that make it to the downstream electrode are immediately 
captured and converted to ballistic carriers obeying 
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As depicted in Fig. 1 these ballistic carriers will ultimately 
thermalize and become majority carriers, however, this process 
is irrelevant to understand the tunneling.   The TRV1 
conditions in (5a) follow directly from (6) with 
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This derivation not only provides meaning and justification for 
(5a) but it also supplies an expression for γn that contains no 
free parameters.  

Inelastic capture:  In this process, we suppose that 
scattering events cause the direct capture/conversion of 
minority carriers.  Assuming the process inside the right 
electrode is described by  
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where τn is the thermalization lifetime, and assuming vn is 
slowly varying across the downstream interface, then (8)1 can 
be integrated to obtain applied generalized TRV conditions:  
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When τn goes to infinite, the elastic limit (TRV1) is again 
obtained.  And in the strong scattering limit (τn→0), it is easily 
shown that GTRV→TRV2 with 
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justification for the TRV2 conditions is thereby provided. 

In order to verify the foregoing theory, in this paper we 
compare its predictions with quantum mechanics.  For 
specificity, we treat the problem of an SIS diode with varying 
barrier heights and thicknesses and different levels of doping in 
the semiconductors.  The quantum mechanical simulations are 
performed using the standard approach of non-equilibrium 
Green’s functions (NEGF) [9] with scattering assumed 
negligible, the effective mass approximation used, and self-
consistent electrostatics included.   For the comparisons to be 
most meaningful, we have strived to make the problems 
analyzed by DG and by NEGF as close to being identical as 
possible. 
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III. RESULTS AND DISCUSSION 

A. Current-Voltage Characteristics 
In Figs. 2a-c we show comparisons between DG and NEGF 

calculations for specific SIS diodes with varying doping in the 
semiconductor contacts. The DG calculations were made using 
the TRV1 BCs in (5a) with (7).  In general, the agreement is 
seen to be quite good over many orders of magnitude and with 
varying bias and barrier height.  The agreements must be 
regarded as especially good when one considers that the DG 
calculations do not involve any fitting parameters.   A similar 
plot but in log-log form in order to emphasize the low-voltage 
behavior is shown in Fig. 3.  The excellent agreement is seen to 
hold even down to very low voltage.   

As noted earlier, a key assertion of DG theory is that it is 
possible to split the kinetic energy of the tunneling electron gas 
into macroscopic and microscopic contributions.  The plot in 
Fig. 4, again with no fitting parameters, explores the 
contribution of the macroscopic kinetic energy and clearly 
shows it to be important especially at higher voltages as one 
would expect.   

B. Solution Profiles 
The largest error in Figs. 2a-c is one that is seen to grow 

systematically with increasing doping density.  To understand 
the origin of this error, in Figs. 5 and 6 we plot the density and 
potential profiles across a diode with a 3eV, 3nm barrier under 
a bias of 1V and with varying doping.  The DG density profiles 
(Fig. 5) are seen to become increasingly in error in describing 
the high-density screening layers, including in not capturing the 
Friedel oscillations clearly visible in the NEGF results.  This 
error is not due to a lack of fidelity in the tunneling description, 
but rather results from a known inadequacy of the DG 
description of quantum confinement [10].  This error in turn 
impacts the exponentially sensitive tunneling currents through 
its effect on the electrostatic contribution to the tunnel barrier 

Figure 2. J-V characteristics of SIS diodes as computed by NEGF 
(squares) and DG (dashed lines) for a 3nm barrier with varying 
barrier heights and electrode dopings of (a) 1019cm-3, (b) 1020cm-3 
and (c) 1021cm-3.  
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Figure 3. J-V curves as computed by NEGF (points) and DG 
(dashed lines) for a 3nm barrier with varying barrier heights 
and electrode dopings of 1019cm-3 (squares), 1020cm-3 (circles) 
and 1021cm-3 (triangles). 
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(“image force” effect) as depicted in Fig. 6.   

IV. SUMMARY AND FINAL REMARKS 
Through careful comparisons between DG tunneling theory 

and NEGF as applied to SIS diodes, in this paper we have 
clarified the meaning and strengthened the legitimacy of the 
DG approach.  Special attention has been given to two aspects 
of the DG approach that are most associated with its 
macroscopic nature and which had not previously been well 
understood, namely, the role of the macroscopic kinetic energy, 
and the form and meaning of the boundary conditions.  
Excellent agreement of DG with NEGF has been obtained 
without fitting parameters.  The largest error seen is due not to  

the tunneling description itself but instead arises from the 
description of the quantum confinement in the semiconductor 
contacts when the density is high.  Overall, the outlook and 
results of this work are strong support for the view that DG 
theory can be a useful tool for analyzing many semiconductor 
devices that involve tunneling. 
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Figure 5.  Electron density profiles for three doping levels at a 
bias of 1V.  
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and showing the barrier-lowering effect. 
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