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Abstract—A high-k-Metal-Gate stack has been investigated
using an open boundary model based on the non-equilibrium
Green’s function formalism. The numerical energy integration,
which is crucial because of the very narrow resonant states, is
pointed out in detail. The model has been benchmarked against
the established classical and closed boundary Schrödinger-
Poisson model. In contrast to the established models, the solution
covers distinct resonant states with a realistic broadening and
results in a major difference in the current density spectrum.

I. INTRODUCTION

The recent introduction of high-k-metal-gate transistors [1]

draws the attention to a more accurate modeling of gate

leakage current. Two different models are commonly used,

namely the Tsu-Esaki formula [2] and the quasi-bound state

(QBS) tunneling formalism [3]. The current expressions are

given by

JTsu = NTsu

∫

TC(E)SF (E) dE (1)

according to Tsu and Esaki, and

JQBS = NQBS

∑

i

ni

τi

(2)

for the QBS case. Expression (1) relies on a the transmission

coefficient TC of the barrier and a supply function SF ,

determined by the carrier distributions in the gate and channel

regions. The QBS method is based on the electron populations

ni of the discrete subbands in the MOS inversion layer and a

finite lifetime τi. Both approaches neglect the carrier density

in the dielectric due to the hard wall boundary conditions

assumed and are thus inconsistent with the non-vanishing

current density.

II. NON-EQUILIBRIUM GREEN’S FUNCTIONS

A more rigorous description by the non-equilibrium Green’s

functions (NEGF) formalism [4] overcomes the aforemen-

tioned problem. It allows for a full quantum mechanical

treatment and yields the current density consistently with

the carrier density. The influence of level broadening due

to scattering processes was modeled by means of an optical

potential [5]. Using this model a high-k gate-stack has been

analyzed.

The gate and the bulk regions have been assumed to be

in thermal equilibrium and are characterized by the Fermi

energies EFG and EFB, respectively (c.f. Fig.1). The leakage

current through the gate dielectric, which separates the equilib-

rium regions, has been calculated assuming ballistic transport

between the two reservoirs [6], [7]. The retarded and advanced

Green’s functions are determined by

GR(r, r′, E) = GA†(r, r′, E)

= [EI − H(r, r′, E) − ΣR(r, r′, E)]−1, (3)

where H(r, r′, E) is the Hamiltonian of the system and

ΣR(r, r′, E) is the retarded self-energy. The optical potential

determined by the carrier lifetime τ is added to the diagonal

elements of the Hamiltonian:

H(r, r, E) = H0(r, r, E) + i-h/(2τ). (4)

Assuming Fermi Dirac statistics, the occupation is given

by fG,B(E) = NC,2DF0

(

β
(

EFG,B
− E

))

with β = 1/kBT .

Within the equilibrium regions, the lesser Green’s func-

tion is calculated as G<(r, r′, E) = GR(r, r′, E)fG,B(E).
The lesser Green’s function in the dielectric is determined

by G<(r, r′, E) = GR(r, r′, E)Σ<(r, r′, E)GA(r, r′, E). The

lesser self energy of the left and right contact is given as

Σ<
G,B(E) = iℑ

{

ΣR
G,B(E)

}

fG,B(E). The electron density and

equlibrium non−equilibrium equlibrium

NEGF classical

ε f,G

f,Bε

Gate Oxide Bulk

classical

Fig. 1: The simulation domain is split into a classical lead

region and a quantum mechanical device region. The gate and

bulk contacts are assumed to be in thermal equilibrium.
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Fig. 2: Self-consistent band edge and the local density of states. Quantum mechanical effects like the penetration of the

wavefunctions into classically forbidden regions and reflections at the barrier are clearly seen. Furthermore, in the channel the

formation of quasi-bound states and the transition to the continuum states is observed.

the leakage current are given by the integrals

n(r) = −2i

∫

G<(r, r, E)
dE

2π
, (5)

j(r) = −
~q

m∗

∫

[

(∇−∇′)G< (r, r′, E)
]

∣

∣

∣

r
′=r

dE

2π
. (6)

III. NUMERICAL METHODS

In inversion, numerous quasi-bound states arise in the

channel of a MOS transistor as displayed in Fig. 2. These states

correspond to narrow resonances in the energy spectrum. To

correctly calculate the integrals (5) and (6) these resonances

need to be accurately resolved. Using a fixed, equidistant

energy grid does not necessarily yield higher numerical ac-

curacy but greatly increases the computational cost, since the

Green’s functions need to be solved for every energy grid

point. Therefore, an adaptive energy integration method has

been implemented [8]. One of the realized algorithms, which

is based on the doubly adaptive quadrature routine reported in

[9], is depicted in Fig. 3. The method utilizes Newton-Cotes

quadrature of the order five, nine, 17 and 33.

Starting from an initial grid, for example, provided by a

resonance finder to further increase numerical accuracy, the

Green’s functions are calculated for the given energies. Then

the integral and the error are computed for all subintervals.

The interval with the biggest contribution to the aggregated

global error is then extracted from the datastructure and

subdivided. If the integration error is reduced hereby, the

two new subintervals are reinserted into the datastructure.

Otherwise, the Green’s functions on additional energy grid

GR and G<
Calculate

erronous subinterval
Process most

by subdivision

Yes No

Error reduced?

Compute integral and error
for all subintervals

Start with
inital grid

Update integral
and global error

Insert additional
energy points

Replace interval with
the two subintervals

GR and G<
Calculate

Apply higher order
Newton-Cotes rule

Loop until global error criterion is met

Fig. 3: Illustration of the doubly adaptive global quadrature

routine.

points are calculated and the next higher order Newton-Cotes

rule is applied to the processed interval. This procedure is

repeated until the previously chosen global error criterion is

fulfilled. By this means, the algorithm generates an energy

grid, automatically refined in critical ranges of the energy

spectrum, namely near the potential of the contact regions and

at the energies of the resonant states.
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Fig. 4: Self-consistent bandedge and carrier concentration.

While the classical carrier concentration reaches its maximum

at the oxide interface, it is zero for the closed boundary model.

For NEGF, penetration into the oxide occurs.

As opposed to previous works [10], the described method

allows the NEGF formalism to be applied self-consistently

with the electrostatic potential for the whole energy range and

therefore, capture the influence of both the quasi-bound and

the continuum states (cf. Fig 4).

IV. RESULTS

For a gate stack in strong inversion, the current spectra of the

Tsu-Esaki, the QBS-tunneling model and the NEGF formalism

are shown in Fig. 5. The NEGF approach clearly shows

the distinct resonant states. Compared to the QBS model,

the peaks show a realistic broadening due to the scattering

processes modeled by the optical potential. On the other hand,

the resonances are completely neglected by the Tsu-Esaki

model. This indicates that the QBS and the Tsu-Esaki models

capture only the extreme cases of a quantized system and a

free electron gas, respectively. For accumulation, the situation

is shown in Fig. 6 and Fig. 7.

The capacitance-voltage characteristics is given in Fig. 8.

For inversion, the closed boundary models predict a reduced

capacitance because the wave function is set to zero at the

interface to the oxide and omit the penetration into the

dielectric. This effect shifts the charge centroid closer to the

interface and increases the capacitance which is taken into

account in the NEGF model. Surprisingly, all three models

give a similar macroscopic leakage current as shown in Fig. 9

and confirmed by the data given in Table 1. However, there is

a major difference in the current spectrum as shown Fig. 5.

V. CONCLUSION

We have implemented a full self-consistent approach to

model the leakage current in high-k gate stacks. A discrepancy

with respect to simpler models in the current spectrum has

-0.1 0 0.1 0.2 0.3 0.4 0.5
Energy [eV]

10
-3

10
0

10
3

10
6

10
9

10
12

C
u
rr

en
t 

d
en

si
ty

 s
p
ec

tr
u
m

 [
A

m
-2

eV
-1

]

NEGF

Tsu

QBS

Fig. 5: Current spectrum displayed for Tsu Esaki, QBS and

NEGF. Contrary to the QBS, the resonant peaks obtained by

the Green’s functions simulation show an energy broadening.

QBS NEGF

Ei[meV] τi[s] I[Am−2] Ei[meV] I[Am−2]

1 8.7 1.78 × 10
−6

10040.0 29.1 9477.4

2 157.7 2.37 × 10
−7

314.1 172.2 209.65

3 260.9 5.01 × 10
−8

27.45 274.0 17.15

4 347.4 1.17 × 10
−8

4.13 359.7 2.48

5 423.4 2.78 × 10
−9

0.92 435.0 0.54

Table 1: Overview of the first five quasi bound states and

their contributions to the total current density. Due to the

variation in the bandedge obtained through the self-consistent

consideration of the charge in the channel, the resonant peaks

given by NEGF are shifted to higher energies.

been observed. Therefore, any model sensitive to the changes

in the current spectrum are affected by these effects. This is

especially true for trap assisted tunneling models which are

needed for the characterization of high-k materials.
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Fig. 6: Self-consistent band edge and electron concentration

in accumulation. For NEGF, penetration into the oxide occurs.
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Fig. 8: The capacitance-voltage characteristics calculated us-

ing the semiclassical, the closed boundary, and the NEGF

model.
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Fig. 7: Current spectrum for Tsu Esaki, QBS and NEGF.

Contrary to the QBS, the resonant peaks obtained by the

Green’s functions simulation show an energy broadening.
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Fig. 9: The current-voltage characteristics show only a slight

variation for the three different modeling approaches.
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