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Abstract—Many-body effects are modulated by the roughness
of the Si-SiO2 interface of MOSFET, and act like scattering poten-
tials. The theory of surface roughness scattering has considered
only the modulation of the Hartree potential. We reformulate the
theory to incorporate many-body effects, and show that exchange
decreases mobility about 35 % with thick gate oxide. We also
calculate the dependence of mobility on the oxide thickness. This
dependence is influenced by exchange significantly.

I. Introduction

The electron mobility in the silicon inversion layer is a key
feature of the performance of MOSFET. The electron mobility
is determined mainly by scatterings from charged centers,
phonons, and the roughness of the Si-SiO2 interface. At high
gate voltage the surface roughness scattering is dominant, then
the understanding of it is very important. However, although
the previous theory of the surface roughness was derived from
deep physical insights, they involve approximations whose
validity is not clear[1], [2], [3], [4], [5], [6]. In this work,
we reformulate the theory of the surface roughness by a field
theoretical approach, and derive two corrections to the previ-
ous theory, one of which is the modulation of exchange by the
surface roughness, and the other is the effect of the gate oxide
thickness. These corrections are important for quantitative and
qualitative discussions about the surface roughness and the
device scaling.

II. Hamiltonian

We consider an n-channel inversion layer of a MOS struc-
ture fabricated on a (001) silicon surface and use the coor-
dinate where z-axis is perpendicular to the Si-SiO2 interface.
We denote the asperity of the Si-SiO2 interface at r = (x, y)
by Δ(r). The region z > Δ(r) is occupied by silicon, and
−tox < z < Δ(r) is occupied by SiO2. The gate electrode lies
at z < −tox.

The silicon conduction band has six energy minima. The
lowest subband in energy comes from the two energy minima
located along the [001] axis in the Brillouin zone. For simplic-
ity we consider the low electron densities and low temperatures
where all electrons reside in the lowest subband, and ignore
intervalley scatterings. In this case we only need to count
the two energy minima located along the [001] axis in the
Brillouin zone. We distinguish these minima by index υ, and
the spin by s.

The Hamiltonian H is decomposed as

H = T +U +V +W, (1)

where T , U, V, and W represent the the kinetic part, the
electron-electron interaction, the interaction with the depletion
charge, and the image potential, respectively. H is divided as

H = H0 +HR, (2)

where H0 is H of the smooth Si-SiO2 interface, and HR is
the deviation of H from H0 due to the surface roughness.
Similarly, T , U, V, and W are divided into those of the
smooth interface and the deviations due to the surface rough-
ness. We define T0, U0, V0, and W0, as T , U, V, and W
of the smooth Si-SiO2 interface, respectively. We refer to the
deviations of T , U, V, and W as TR, UR, VR, and WR,
respectively.

In the effective-mass approximation

T =
∑
υ s

∫
dxΨ†υs (x)

[
−�

2

2
∇†m−1∇

]
Ψυs (x) , (3)

where Ψυs (x) is the field operator, x = (r, z), m is the mass
matrix, ∇ is the nabla operator, and ∇† is its conjugate. In
our coordinate m = [mαβ] is a diagonal matrix such as mxx =

myy = mt, and mzz = ml.
We assume that the electron states of H0 are acceptably de-

scribed by a single-particle wave function, L−1/2
x L−1/2

y eik·rζi (z),
where k is the wavenumber, i is the subband index, and Lx

and Ly are the sample sizes of the x- and the y-direction,
respectively. ζ0 (z), ζ1 (z), ζ2 (z), · · · form a complete or-
thonormal set. Moreover, we assume that the potential barrier
of SiO2 is too high for electrons to penetrate SiO2. Then,
ζi (z) = 0 for z ≤ 0.

With the surface roughness we must consider wave func-
tions which are 0 at z < Δ(r), and the Hilbert space which
consists of these functions. {L−1/2

x L−1/2
y eik·rζi (z − Δ(r)) | i =

0, 1, 2, · · · } is a complete orthonormal set in this Hilbert space.
Therefore, Ψυs can be represented as

Ψυs (x) =
1√
LxLy

∑
υ s

∑
k i

eik·rζi (z − Δ(r)) cυski, (4)

where cυsik and c†υsik are an annihilation and creation operator,
respectively. By substituting Eq. (4) to Eq. (3), we obtain

T0 =
∑
υ s

∑
k

∑
i j

t0i j (k) c†υsik cυs jk, (5)

and

TR =
1

LxLy

∑
υ s

∑
k q

∑
i j

Δ̃(q) tRi j (k + q, k) c†υsik+q cυs jk, (6)
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to the first order of Δ(r), where

t0i j (k) =
�

2k2

2mt
δi j −

�
2

2ml

∫
dz ζ∗i (z)

d2

dz2
ζ j (z) , (7)

tRi j
(
k, k′

)
=
�

2 (
k′2 − k2)
2mt

∫
dz ζ∗i (z)

d
dz
ζ j (z) , (8)

and Δ̃(k) is the Fourier transform of Δ(r).
The electron-electron interaction is given by

U = e2

2

∑
υ υ′

∑
s s′

∫
dx dx′Ψ†υ′ s′

(
x′

)
Ψ†υs (x)

× ψ (
x; x′

)
Ψυs (x)Ψυ′ s′

(
x′

)
, (9)

where ψ (x; x′) is the electrostatic potential, which is obtained
by solving the Poisson’s equation,

∇·
{
εi + (εs − εi) θ

(
z − Δ(r)

)}
∇ψ (

x; x′
)
= −δ (x − x′

)
, (10)

on the condition that the potential is constant at the surface of
the gate electrode, ψ (x; x′)|z=−tox

= 0, where εs and εi are the
dielectric constants of silicon and silicon oxide, respectively.
Eq. (10) can be rewritten as

ψ
(
x; x′

)
= ψ0

(
r − r′, z, z′

)
−

∫
dx′′

{
∇′′ψ0

(
r − r′′, z, z′′

) } · P (
x′′; x′

)
, (11)

where ψ0 (r − r′, z, z′) is ψ (x; x′) in the absence of the surface
roughness, ∇′′ is the nabla operator with respect to x′′, and

P
(
x; x′

)
= (εs − εi)

{
θ
(
z − Δ(r)

)
− θ (z)

}
∇ψ (

x; x′
)
. (12)

P (x; x′) can be regarded as the polarization due to the surface
roughness. ψ0 (x; x′) was obtained exactly[7]. We use ψ0 (x; x′)
in place of ψ (x; x′) in Eq. (12), and substitute it to Eq. (11)
to obtain ψ (x; x′) to the first order of Δ(r). The calculation is
performed in the momentum space, and leads to the Fourier
transform of ψ (x; x′),

ψ̃
(
q, z; q′, z′

)
=

∫
dr dr′ e−i(q·r−q′·r′)ψ

(
r, z; r′, z′

)
= (2π)2 δ

(
q − q′

)
ψ̃0

(
q, z, z′

)
+ Δ̃

(
q − q′

)
ψ̃R

(
q, z; q′, z′

)
, (13)

where ψ̃0 (q, z, z′) is the Fourier transform of ψ0 (r, z, z′),

ψ̃0
(
q, z, z′

)
=

1
2εsq

{
e−q|z−z′ | +

η − e−2qtox

1 − ηe−2qtox
e−q(z+z′)

}
, (14)

and

ψ̃R
(
q, z; q′, z′

)
= (εi − εs)

{
q · q′ ψ̃0 (q, z, 0) ψ̃0

(
q′, 0, z′

)
+
εs

εi
β̃0 (q, 0, z) β̃0

(
q′, 0, z′

) }
. (15)

to the first order of Δ(r). Here

β̃0
(
q, z, z′

)
=

1
2εs

{
sgn

(
z − z′

)
e−q|z−z′ |

+
η − e−2qtox

1 − ηe−2qtox
e−q(z+z′)

}
, (16)

and

η =
εs − εi

εs + εi
. (17)

By substituting Eq. (4) and (13) to Eq. (9), we get

U0 =
1
2

1
LxLy

∑
υ υ′

∑
s s′

∑
i i′

∑
j j′

∑
k k′

∑
q

u0i′i j′ j (q)

× c†υ′ s′ j′k′−qc†υsi′k+qcυsikcυ′ s′ jk′ , (18)

UR =
1
2

(
1

LxLy

)2 ∑
υ υ′

∑
s s′

∑
i i′

∑
j j′

∑
k k′

∑
q q′
Δ̃
(
q − q′

)
× uRi′i j′ j

(
q, q′

)
c†υ′ s′ j′k′−q′c

†
υsi′k+qcυsikcυs jk′ , (19)

where

u0i′i j′ j (q) = e2
∫

dz dz′ ζ∗i′ (z) ζi (z) ζ∗j′
(
z′
)
ζ j

(
z′
)
ψ̃0

(
q, z, z′

)
,

(20)

and

uRυυ′i′i j′ j
(
q, q′

)
= e2

∫
dz dz′ ζ∗i′ (z) ζi (z) ζ∗j′

(
z′
)
ζ j

(
z′
)

×
{
−β̃0

(
q′, z, z′

) − β̃0
(−q, z′, z

)
+ ψ̃R

(
q, z; q′, z′

)}
, (21)

to the first order of Δ(r).
The interaction with the depletion charge is described by

V =
∑
υ s

∫
dr dzΨ†υs (r, z) V (r, z)Ψυs (r, z) , (22)

where V (r, z) is the potential due to the depletion charge,

V (r, z) = e2NA

∫
dr′ dz′ ψ

(
r, z; r′, z′

)
× θ

(
z′ − Δ(r′) ) θ (zd + Δ

(
r′
) − z′

)
, (23)

where NA is the acceptor concentration, and zd is the depletion
layer width. We expand Eq. (22) to the first order Δ(r) by using
Eq. (4), (13), and (23). The results are

V0 =
∑
υ s

∑
i j

∑
k

v0 jic
†
υs jkcυsik, (24)

and

VR =
1

LxLy

∑
υ s

∑
i j

∑
k q

Δ̃(q) vR ji (q) c†υs jk+qcυsik, (25)

where

v0 ji =

∫
dz ζ∗j (z) ζi (z) V0 (z) , (26)

and

vR ji (q) =
e2Ndepl

εs

{
δi j + η

1 + e−2qtox

1 − ηe−2qtox

∫
dz ζ∗j (z) ζi (z) e−qz

}
.

(27)

for qzd � 1. Here Ndepl = NAzd, and V0 (z) is V (r, z) in the
absence of the surface roughness.

When qzd � 1, we need an additional term to describe
vR ji (q). The surface roughness modulates the depletion charge.

2
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This is reflected in V (r, z) by introducing Δ(r)-dependent zd.
It can be shown that this introduces a term proportional to
exp (−qzd) to vR ji (q). When q is small, this term cannot be
ignored. However, vR ji (q) with small q may contribute to
the conductivity little because small q corresponds forward
scattering. Then we have omitted this additional term.

The image potential part of the Hamiltonian is obtained by

W =
∑
υ s

∫
dr dzΨ†υ s (r, z) W (r, z)Ψυ s (r, z) , (28)

where W (r, z) is the image potential acting on the electron
at (r, z), and obtained by subtracting the contribution of the
self-field from ψ (x; x), and multiplying 1

2 . The calculation is
similar to those for U and V, and leads to

W0 =
∑
υ s

∑
i j

∑
k

w0 ji c†υs jkcυsik, (29)

WR =
1

LxLy

∑
υ

∑
k q

Δ̃(q) wR ji (q) c†υs jk+qcυsik, (30)

where

w0 ji =
e2

8πεs

∫
dz ζ∗j (z) ζi (z)

∫ +∞

0
dk

η − e−2ktox

1 − ηe−2ktox
e−2kz, (31)

and

wR ji (q) = − e2

2εs

∫
dz ζ∗j (z) ζi (z)

∫
dk

(2π)2

{
η − e−2ktox

1 − ηe−2ktox
e−2kz

− εsψ̃R (k + q, z; k, z)

}
. (32)

III. mobility

The electron conductivity σ is calculated by the Kubo
formula, and it can be shown that

σ ≈ e2gv

π�m2
t LxLy

∑
pp′

p · p′
[

Im G
(
p, p′, 0

) ]2
, (33)

where G (p,p′, ω) is the retarded Green’s function, p and p′

are electron momenta parallel to the Si-SiO2 interface, and gv

is the valley degeneracy which is 2 for the lowest subband.
Unfortunately H is so complex that G (p,p′, ω) cannot be

calculated exactly, so we use the perturbation theory in terms
ofU0,UR,VR, andWR. The perturbation calculation in terms
of U0 gives the expansion of σ in powers of rs = (πNsa2

B)−1/2,
where Ns is the electron sheet density and aB is the Bohr
radius. On the other hand, the perturbation calculation in terms
of UR, WR, and VR gives the expansion by Δ(r).

G (p, p′, ω) is obtained by analytic continuation from Mat-
subara Green’s function G (p, p′, iω). G (p, p′, iω) can be ex-
pressed in the form,

G
(
p,p′, iω

)
= δpp′G

(0) (p, iω) +
1

LxLy

∑
q

G(0) (p, iω) Δ̃(q)

× Σ (p, p − q, iω) G
(
p − q,p′, iω

)
, (34)

where G(0) (p, iω) is the Green’s function in the absence of the
surface roughness. To the lowest order of Δ̃(q)

Σ (p, p − q, iω) = ΣT (p, p − q) + ΣV (q) + ΣW (q)

+ ΣH (q) + Σx (p, p − q) , (35)

where ΣT , ΣV , and ΣW are the self-energies due to TR,VR, and
WR, respectively. Both ΣH and Σx are the self-energies due
to UR, and described by Feynman diagrams shown in Fig. 1
and 2, respectively. Wavy lines in these figures correspond
to uR (q, q′), and cross symbols represent Δ̃(q) (Fig. 3). The
surface roughness breaks the translational symmetry parallel
to the Si-SiO2 interface, and Δ̃(q) gives the momentum q. If
we replace uR (q, q′) by u0 (q) in these figures, we obtain the
familiar diagrams which describe the Hartree and exchange
terms in G(0) (p, iω). So we can regard ΣH and Σx as the
modulations of the Hartree and exchange terms by the surface
roughness, respectively.

The exchange term is of a higher order in rs than the Hartree
term. Then exchange becomes relatively small at large Ns, and
this is the reason why the electronic states are well described
by the Hartree approximation in the absence of the surface
roughness. In contrast to this, ΣH and Σx are of the same
order in rs. This difference comes from the q-dependence
of u0 (q) and uR (q, q′). u0 (q) is approximately proportional
to the inverse of q. On the other hand, uR (q, q′) is of the
zeroth order in q and q′. The previous theory uses the Hartree
approximation for the electron-electron interaction from the
start, so involves ΣH , but doesn’t count Σx. However, because
ΣH and Σx are of the same order in rs, there is no reason to
omit Σx.

If intersubbands scattering is ignored, the result becomes
simple.

ΣH (q) + ΣV (q) + ΣW (q) = �−1ε−1 (q)
{
uR (q, 0) Ns

+ vR (q) + wR (q)
}
, (36)

and

Σx (p + q, p) = − 1
�LxLy

∑
|p+q′ |<kF

uR
(
q′,q′ − q

)
, (37)

where ε−1 (q) is the dielectric function, and kF is the Fermi
wavenumber. We have omitted suffixes for the subbands be-
cause we are considering only the lowest subband. The life
time τ is given by

1
τ
= 2π�

∫
dq

(2π)2

1
LxLy

〈
Δ̃(q) Δ̃(−q)

〉
sr
Σ (k,k + q)Σ (k + q,k)

× δ
(
Ek+q − EF

) (
1 − cos θk k+q

)
, (38)

where θk k+q is the angle between k and k+q, and 〈· · · 〉sr stands
for the average over the ensemble of the surface roughness.
We assume the form of the autocorrelation function of Δ(r)
as 〈Δ(r)Δ(r′)〉sr = Δ

2e−|r−r′ |2/Λ2
. We calculate ε (q) by the

random-phase approximation.

3
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q

p − q, ω p, ω

Fig. 1. diagram for Δ̃(q)ΣH (q)

p − q, ω p, ω

q

Fig. 2. diagram for Δ̃(q)Σx (p, p − q)

q′ q′ − q

q

Fig. 3. diagram for Δ̃(q) uR (q′, q′ − q)

IV. results and discussion

In Fig. 4 we show calculated surface roughness limited
mobilities as functions of Ns for tox = 32 nm and 1 nm. We
adopt Λ = 1.5 nm and Δ = 0.35 nm which were extracted from
comparisons between calculations and experimental data of
Hall conductivities by Goodnick et al.[8]. The previous theory
ignores the finiteness of tox assuming that kFtox � 1, but this
assumption does not hold for tox � 2 nm. We consider the
gate electrode explicitly when solving the Poisson equation,
Eq. (10), then can discuss the tox-dependence. To evaluate
the effect of Σx, we compare the mobilities with and without
Σx. μH is the mobility without Σx, and μHx is the one which
involves both ΣH and Σx. When tox = 32 nm, Σx decreases the
mobility by about 35 %, and this ratio is almost insensitive to
Ns. This implies that ΣH and Σx is of the same order in rs.

The decrease of tox emphasizes the effect of the gate
electrode. The electron induces the positive charge at the
interface of the gate electrode. This charge decreases Σx in
magnitude, and changes the sign of it at the extremely thin
gate oxide. So μHx is less than μH at tox = 1 nm. The finiteness
of tox affects also ΣH , and μH decreases with the decrease of
tox. The smaller Ns is, the more significantly μH decreases,
because the finite tox effect is considerable only at kFtox � 1,
and small Ns corresponds to small kF .

In reality, impurity scattering is dominant at small Ns. We
calculate the mobility limited by coulomb scattering from ac-
ceptors in silicon substrate. The total mobility is calculated by
Matthiessen’s rule with surface roughness limited and coulomb
scattering limited mobilities. In Fig. 5 we show calculated total
mobilities as functions of Ns. Impurity scattering has little
dependence on tox, so it smokes out the tox-dependence of μH

and μHx. The decrease of tox from 32 nm to 1 nm decreases the
total mobility by less than 10 % with Σx, but without Σx the
decrease of the mobility remains significant even with impurity
scattering.

In conclusion, we have reformulated the theory of the
surface roughness by using a field theoretical approach. We
have found the effects of the modulation of exchange and
the finiteness of the gate oxide thickness. These were ignored
by the previous theory, but give the considerable effects on
mobilities.
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