
A Deterministic Boltzmann Equation Solver for

Two-Dimensional Semiconductor Devices

Sung-Min Hong, Christoph Jungemann
EIT4

Bundeswehr University
85577 Neubiberg, Germany

Email: hi2ska2@gmail.com, Jungemann@ieee.org

Matthias Bollhöfer
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Abstract—We have developed a Boltzmann equation
solver for two-dimensional (2D) semiconductor devices
based on the spherical harmonics expansion and the
maximum entropy dissipation scheme for stabilization.
The large system of equations is partitioned according
to the order of the spherical harmonics and solved
by a memory efficient blockwise Gauss-Seidel method.
Results are presented for a 2D NPN Si bipolar junction
transistor.

I. Introduction

Semiclassical transport in semiconductor devices can be
described by the Boltzmann equation (BE). The usual ap-
proach for solving the BE, the Monte Carlo (MC) method,
has many disadvantages due to its stochastic nature. For
example, small currents entail excessive CPU times and
small-signal analysis is exceedingly difficult. Therefore, a
deterministic approach to the BE is preferable for such
calculations.

Among alternative nonstochastic methods for the BE is
the spherical harmonics expansion (SHE) [1], [2], where the
electron distribution function is expanded with spherical
harmonics, Yl,m in the wavevector space reducing the high
dimensionality of the phase space.

Since the necessary order of SHE increases with decreas-
ing device size as the transport becomes more and more
ballistic [3], a SHE solver with an arbitrary number of
spherical harmonics is required. For 1D devices, it has
been successfully applied to the calculation of transport
[3], [4] and noise [5] including many spherical harmonics.
However, the application of SHE to 2D devices has been
restricted to the lowest possible number of spherical har-
monics, lmax=1, so far [1], [6]. The main obstacle which
prevents inclusion of higher number of spherical harmonics
is the huge memory requirement.

In this work, we present an implementation of the SHE
solver for 2D devices with an arbitrary number of spherical
harmonics. In Sec. II, the two-dimensional implementation
is presented. An interpolation scheme for the total energy
of the valley minima in the 2D real space is described.
In Sec. III, a partitioning scheme for the memory-efficient
Gauss-Seidel method [7] is explained. In Sec. IV, a 2D
NPN Si bipolar junction transistor is investigated as a

Fig. 1. Cartesian tensor product grid for the 2D real space. The
four grid nodes at the corners of the rectangle belong to the direct
grid and the center node to the adjoint one.

numerical example. Conclusions are drawn in Sec. IV.

II. Two-Dimensional Implementation

The stabilization scheme based on the maximum en-
tropy dissipation scheme [8], previously applied to 1D
devices [3], has been extended to 2D. A staggered grid in
the 2D real space and the energy space is used, where the
even components of the distribution function are defined
on the nodes of the direct grid, and the odd ones on the
adjoint grid. In Fig. 1, the Cartesian tensor product grid
for the 2D real space is shown. The control volume of a
certain adjoint node is denoted as Ω.

In order to obtain a stabilized expression for the odd
components of the distribution function (fluxes), the fol-
lowing integrals over a part of the control volume of a
certain adjoint node, Ωα,β , are required [3].

HVν,α,β =

∫

Ωα,β

dr exp(−ψ′

ν(r)), (1)

HAν,α,β =

∫

Ωα,β

da exp(−ψ′

ν(r)), (2)
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where −ψ′

ν(r) is the (normalized) total energy of the
minimum of the ν-th valley and da contains only the
surface which overlaps with the surface of Ω. Since the
electrostatic potential is defined on the nodes of the direct
grid, the total energy of the valley minimum, which is
the sum of the conduction band edge, valley shift and
electrostatic potential, is also defined on those nodes.
Therefore, we need an interpolation formula to compute
the valley minimum over Ω from the values defined on the
direct nodes.

The valley minimum on the node of the adjoint grid
at the center of the control volume is assumed to be the
average of the values on the four direct nodes.

ψ′

c =
ψ′

i,j + ψ′

i+1,j + ψ′

i,j+1 + ψ′

i+1,j+1

4
. (3)

Then, the control volume is splitted into four triangles
along its diagonals. After that, the valley minimum is
linearly interpolated in each triangle. The two integrals
in (1) and (2) for Ω1,1 in Fig. 1, can be solved exactly

HVν,1,1 = exp(−ψ′

c)
∆x

2

∆y

2
×

{

B−1
2 (−F x+

x ,−F x+
y ) +B−1

2 (−F y+
y ,−F y+

x )
}

,

(4)

HAν,1,1 =
∆y

2
exp(−ψ′

i+1,j+1)B
−1(−

ψ′

i+1,j+1 − ψ′

i+1,j

2
)x̂

+
∆x

2
exp(−ψ′

i+1,j+1)B
−1(−

ψ′

i+1,j+1 − ψ′

i,j+1

2
)ŷ,

(5)

where B−1
2 (x, y) = B−1(x+y)−B−1(x)

y
, B−1(x) = exp(x)−1

x
,

and the forces F x+
x , F x+

y , F y+
x , and F y+

y are defined in
Fig. 1. Similar expressions can be obtained for the other
regions.

III. Blockwise Gauss-Seidel Method

The inclusion of a second dimension in real space results
in the loss of the cylindrical symmetry of the electron
distribution function and the number of unknowns grows
quadratically with lmax. In addition, the number of en-
tries per equation increases resulting in a huge increase
in required memory. Although ILUPACK [9], the linear
solver used in this work, is very memory efficient, a further
reduction in memory space is required for a large lmax.

In this work, we adopt the blockwise Gauss-Seidel
method [7], and a partitioning scheme suitable for the
Gauss-Seidel method is developed. Since the zeroth or-
der component yields the electron density and the first
order the current density, we can conclude that important
information is contained in the lowest order components.
Therefore, a partitioning scheme according to the order of
spherical harmonics is a natural choice.

As a first step, the odd equations are eliminated by a
pre-solver. The resultant compressed Jacobian matrix is
arranged and divided into many small blocks according to

the order of the spherical harmonics. For example, in the
case of lmax = 5 three diagonal blocks of the order 0, 2,
and 4 appear (where the zeroth block contains also the
Poisson equation). The number of unknowns for the block
of order l, Nl, is given by

Nl = Nxy ×Nǫ ×Nν × (l + 1), (6)

where Nxy is the number of the spatial nodes, Nǫ the num-
ber of nodes in energy, Nν the number of distinguishable
valleys in the Si conduction band, and the factor (l+1) is
introduced to consider different m values.

Since we neglect the Pauli principle, there is no coupling
between different valleys for blocks with l > 0. This
observation allows us to further divide each block with
positive l into Nν independent subblocks. For example,
when we consider lmax = 9, the number of unknowns for
the biggest subblock is just three times larger than the
smallest, zeroth block.

Because only the diagonal blocks are exactly solved by
ILUPACK, the memory requirement is greatly reduced.
The incomplete factorization for the diagonal blocks,
which is time-consuming for 2D devices, needs to be
performed only once in each Newton step. Moreover, each
block can be handled by a different computer and the
memory restriction is further alleviated. The Gauss-Seidel
method is used to solve the complete linear system by
iteration.

IV. Numerical Example

Results are presented for a 2D NPN Si BJT. The
electron model is based on the analytical six valley band
structure and phonon scattering mechanisms developed by
the Modena group [10]. The elliptical valleys are mapped
onto spherical ones by the Herring-Vogt transform [11].
Due to the translational symmetry along the third dimen-
sion in the real space, all coefficients of the distribution
function with negative m vanish.

The 2D doping profile is shown in Fig. 2. The base of
this transistor is 1 µm thick. A heavy p-type doping is
included to form the base contact. The total number of
spatial grid points is 800. When we consider lmax = 9, the
total number of unknown variables in the uncompressed
form is 6734400. In its compressed form, the number is
3060800.

Fig. 3 shows the electron current at VBE = 0.8 V as
obtained by SHE with lmax = 1 and lmax = 3. Early
voltages calculated from lmax = 1 and lmax = 3 are -34.8 V
and -34.5 V, respectively. It is noted that the Early voltage
is very difficult to simulate by MC, due to its stochastic
errors.

In Fig. 4, the error in collector current is shown. The
error in collector current decreases exponentially with the
maximum order. An expansion up to the third order yields
an error which is sufficiently less than 1.0 %. However,
as stated in Introduction, the necessary order of SHE
increases with decreasing device size as the transport
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Fig. 2. Doping profile (absolute value) and nonequidistant grid of
the Si BJT.
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Fig. 3. Collector current at VBE = 0.8 V as obtained by SHE. Early
voltages calculated with lmax = 1 and lmax = 3 are -34.8 V and -34.5
V, respectively.

becomes more and more ballistic [3]. Fig. 5 shows the
electron velocity along x-direction at VBE = 0.8 V and
VCE = 0.5 V for different numbers of spherical harmonics.
The convergence of SHE is clearly visible.

The linear response of the electron density, divided by
the linear response of the collector current, is shown in
Fig. 5. The bias condition is VBE = 0.8 V and VCE =
0.5 V, and a small voltage perturbation is applied to
the base terminal. Thus, in contrast to MC, small-signal
analysis, such as the cutoff frequency calculation in the
quasi-stationary limit [12], is possible by SHE.

The convergence property of the blockwise Gauss-Seidel
method for different Newton steps is shown in Fig. 7. The
forcing term of the inexact Newton method [13] is set to be
10−4. Up to the third Newton step, the norm of the resid-
ual vector decreases very rapidly, therefore, the blockwise
Gauss-Seidel method takes only a few iterations. After the
third newton step the convergence speed degrades, and
approaches a lower constant value.
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Fig. 4. Error of the collector current at VBE = 0.8 V and VCE = 0.5
V for different numbers of spherical harmonics relative to the ninth
order.
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Fig. 5. Electron velocity along x-direction at VBE = 0.8 V and VCE

= 0.5 V for different numbers of spherical harmonics. y = 0.
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Fig. 6. Linear response of the electron density, divided by the linear
response of the collector current. VBE = 0.8 V and VCE = 0.5 V. A
small voltage perturbation is applied to the base terminal. y = 0.
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Fig. 7. Norm of the residue versus the number of Gauss-Seidel
iterations summed over the Newton steps. VBE = 0.8 V and VCE

= 0.5 V. lmax = 5.
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Fig. 8. Convergence property of the blockwise Gauss-Seidel method
for different numbers of spherical harmonics. VBE = 0.8 V and VCE

= 0.5 V. The norm for the fourth Newton iteration is shown.

The convergence property of the blockwise Gauss-Seidel
method for different lmax is shown in Fig. 8. The norm for
the fourth Newton iteration is shown. The convergence
speed of the blockwise Gauss-Seidel method degrades as
lmax and therewith the number of blocks increases.

V. Conclusion

In this work, we have presented the first implementation
of a SHE solver for 2D devices with lmax larger than one.
For the stabilization in the 2D real space, an interpolation
scheme for the valley minimum was employed. To lessen
the memory restriction, the memory-efficient blockwise
Gauss-Seidel method was employed. Also a partitioning
scheme suitable for the Gauss-Seidel method was devel-
oped. As an example, simulation results for a 2D NPN Si
BJT with lmax up to 9, were shown.
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