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Abstract—We have developed a new self-consistent and three-
dimensional quantum simulator for Si-nanowire transistors 
based on the Wigner function model, coupled with Schrödinger-
Poisson algorithm. To achieve a sufficient accuracy for 
calculating subthreshold current, we introduced a third-order 
differencing scheme for discretizing the diffusion term in the 
Wigner transport equation. Then, by comparing with 
semiclassical Boltzmann and non-equilibrim Green’s function 
approaches, the validity of the present simulator is discussed. 

Index-terms―Si-nanowire transistors, quantum transport, 
Wigner function, source-drain tunneling, quantum confinement 

I.  INTRODUCTION 
Si-nanowire transistors (SNWTs) are promising candidates 

as extremely downscaled MOSFETs for the future Si-VLSIs, 
because device structures with gate-all-around (GAA) 
configurations provide better electrostatic control than the 
conventional planar structures, and a higher current capability 
due to an improved electronic bandstructure is expected [1]. To 
understand the device physics of SNWTs and assess their 
performance limits, a fully quantum simulator considering 
electrostatic gate control, atomistic effects and realistic 
scattering processes is required. In this paper, we present a new 
self-consistent and three-dimensional quantum simulator based 
on a direct solution of the Wigner transport equation [2, 3], 
coupled with Schrödinger-Poisson algorithm. In particular, we 
introduced a third-order differencing scheme for discretizing 
the diffusion term in the Wigner transport equation, to achieve 
a sufficient numerical accuracy in the subthreshold region. The 
present quantum simulator can handle all quantum effects in 
SNWTs, such as two-dimensional quantum confinement and 
source-drain (SD) tunneling, where the significance of SD 
tunneling is verified by comparing with semiclassical 
Boltzmann approach. Furthermore, the subthreshold swings are 
compared with the results from the non-equilibrium Green’s 
function (NEGF) method [4], and its validity and a scaling 
limit are discussed.   

II. COMPUTATIONAL METHOD 

A. Model and Theory 
The SNWT device model used in this study is shown in 

Fig. 1 (a), where GAA structure is employed, and its cross-

section is 3 nm-square with the gate oxide thickness of 0.5 nm. 
The doping concentration in the source and drain regions is 
1020

 cm-3 and the channel region is undoped. The conduction 
band valleys of Si is shown in Fig. 1 (b), where the channel 
direction is taken as <100> and the confinement directions 
<010> and <001>. To simulate quantum transport in such 
nano-MOS devices, we have developed the computational 
algorithm based on Wigner transport formalism as shown in 
Fig. 2. In this approach, the Wigner distribution function is 
defined for each quantized subband n for the three-pairs of the 
valleys, En

v(x), which is calculated by solving the 2D 
Schrödinger equations for each y-z cross-section and each 
conduction band valley (v = 1-1’, 2-2’, 3-3’). We applied the 
Lanczos method based on the modified Gram-Schmidt 
orthogonalization to solve the 2D Schrödinger equations. Then, 
by using the obtained subband profiles, 1D Wigner transport 
equation at steady state given below is solved along the source-
drain direction x.  
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where ),(, kV vn χ  is the non-local potential driving term given 
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Fig. 1 (a) GAA-SNWT device model and (b) conduction 
band valleys of Si. 
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This term represents quantum mechanical effects such as 
tunneling. Note that χ and ξ denote the diagonal and cross-
diagonal coordinates between space variables x and x’ for two 
particles, respectively; χ = (x+ x’)/2 and ξ = x- x’.  

The right-hand side of eq. (1) stands for a collisional term. 
For phonon scatterings, the collisional term can be represented 
by the same integral expression as in the Boltzmann transport 
equation [5], which involves the distribution functions of 
carriers in different subbands and at different wavenumbers. In 
this paper, however, we employ the simpler relaxation time 
approximation (RTA) as a first step to consider scattering 
effects, which is given by [6, 7, 8] 
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where τ and ν,n
eqf  denote the relaxation time and the 

distribution functions at equilibrium (V = 0), respectively, and 
eq. (3) ensures charge conservation. Here, ν,n

eqf  was substituted 
by the equilibrium Wigner distribution functions computed at 
VD = 0V. The value of τ was calculated from the mobility of 
500 cm2

 / (V · s) by em /*μτ νν =  for each conduction band 
valley, since the mobility is a more familiar parameter than the 
relaxation time. 

To analyze the gate control in SNWTs, the 3D Poisson 
equation is self-consistently solved by using the preconditioned 
conjugate gradient method with the incomplete Cholesky 
factorization. Since the main purpose of this study is to 
demonstrate the validity of the present Wigner approach, we 
introduced the effective mass approximation and RTA. 
However, the present approach is applicable for atomistic 
simulation beyond the effective mass approximation and can 
include physics-based scattering processes [5]. Such extensions 
are currently in progress. 

B. Discretization Method 
As is well known, numerical solutions of the Wigner 

function model significantly depend on discretization methods 

for solving eqs. (1) and (2). Frensley pointed out that discrete 
Wigner function is not generally consistent with discrete 
density operator, and thus some of the information contained in 
the density operator will be lost in the Wigner function, 
because the (χ, ξ) mesh points are only half as dense as the (x, 
x’) mesh points [6]. A way to incorporate all the (x, x’) points 
might be to use a staggered mesh in (χ, ξ) with mesh spacing 
of xΔ=Δ )2/1(χ  and xΔ=Δ 2ξ . Mains and Haddad have 
investigated such a scheme on the potential driving term of eq. 
(2), but it seems to be only applicable for equilibrium situation 
due to the requirement for central differencing scheme (CDS) 
to be employed [9]. Therefore, we adopted here higher-order 
accurate discretizations for the spatial derivative term on the 
left-hand side of eq. (1) [7]. We expect that such a simpler 
modification will be effective in the present nano-MOS 
simulation.  

In this paper, we examined three types of differencing 
schemes, which are upwind differencing scheme (UDS),  
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second-order upwind differencing scheme (SDS),  
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and third-order upwind differencing scheme (TDS).  
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It can be readily proven that TDS corresponds to a hybrid 
scheme consisting of CDS and SDS with a combination ratio of 
2:1 as follows.  
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Thus, TDS may be possibly linked to the Mains and Haddad’s 
idea mentioned above, which is worthy of consideration for 
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Fig. 2 Computational algorithm based on Wigner 
function model.  
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Fig. 3 ID - VG characteristics computed by using UDS, 
SDS and TDS for the spatial derivative term in the 
Wigner transport equation.  
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further improvement in numerical accuracy and stability of the 
Wigner function model.  

The conventional boundary conditions for the Wigner 
transport equation [2] are used in the simulation, that is, the 
equilibrium Fermi-Dirac distribution functions are imposed 
only for the injected electrons into a device region, while 
distribution functions for the outgoing electrons are determined 
by solutions of eq. (1). Such boundary conditions should be 
used at the source/drain contacts sufficiently away from a 
quantum region, because electron transport in reservoirs 
attached to the device region is supposed to be classical.  

III. RESULTS 

A. Higher-Order Differencing Schemes 
First, Fig. 3 shows the ID - VG characteristics computed by 

applying UDS, SDS and TDS to the whole device region. First, 
for the UDS approach, unexpectedly large subthreshold current 
is observed below VG = 0.2V. SDS significantly improves such 
a subthreshold current behavior, but it occasionally outputs 
negative subthreshold current at small gate biases. TDS further 
improves the subthreshold current behavior and allows us to 
estimate the subthreshold swings as presented later. On the 
other hand, the on-currents at large VG conditions are almost 
independent of the differencing schemes. So, careful treatment 

of differencing scheme is found to be needed for a precise 
simulation in the subthreshold region. Hereafter, we will use 
TDS in the Wigner approach. 

B. Multisubband Quantum Transport 
Next, we present the electrical characteristics of SNWTs. 

Fig. 4 shows (a) the subband profiles and (b) the electron 
density profiles for several quantized subbands along the 
source-drain direction, where LG = 6nm, VD = 0.5V and VG = 
0.25V. The valleys 1, 1’, 2 and 2’ are completely degenerated 
because of the square cross-section. These four valleys have 
the larger confinement effective mass (ml) in the y or z 
direction, so their lowest (n = 0) and first higher (n = 1) 
subbands are located below the lowest subband of the valleys 3 
and 3’ (n’ = 0), as shown in Fig. 4 (a). As a result, most of the 
electrons are populated in those four valleys (1, 1’, 2, 2’) as 
shown in Fig. 4 (b). This is favorable from the point of view of 
drive current, because they have the smaller transport effective 
mass of mt.  

Next, Fig. 5 shows the variations in the total electron 
density profiles due to gate bias voltage. Note that each profile 
is compared with that from a semiclassical Boltzmann 
approach where the 1D Boltzmann transport equation is solved 
along the source-drain direction, while the 2D Schrödinger 
equations are solved in the same manner as mentioned in Sec. 
II-A. It is found that the electron densities inside the channel 
are larger for the Wigner approach, especially at smaller gate 
biases. This is due to SD tunneling discussed later again. In 
addition, the inset in Fig. 5 shows the linear plot of the density 
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Fig. 4 (a) Subband profiles and (b) electron density profiles 
for several quantized subbands along source-drain 
direction. The channel length is 6nm, and VD = 0.5V and 
VG = 0.25V. 
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Fig. 6 (a) Wigner and (b) Boltzmann distribution functions.  
LG = 6nm, VD = 0.5V and VG = 0.4V. 
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Fig. 5 Variations in total electron density profiles due to 
gate bias voltage. Results from a semiclassical Botzmann 
approach are also plotted in the dashed lines. The inset 
shows linear plot of the density profile at VG = 0.4V 
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profile at VG = 0.4V, which indicates a weak oscillation in the 
drain region for the Wigner function model. This is caused by 
an interference effect between right-going and left-going 
electron waves, which is emphasized by hot electrons in the 
drain region as shown in Fig. 6 (a). Please take notice that the 
interference pattern still exists at the right boundary. This 
suggests that a longer drain region or phase randomizing 
process should be introduced, to be consistent with the 
boundary conditions described in Sec. II-B. 

Fig. 7 shows the ID - VG characteristics for LG = 9nm, 6nm 
and 4.5nm, computed by using the Wigner and Boltzmann 
approaches. In the Wigner approach, a perceptible increase of 
the subthreshold current is obtained for the channels shorter 
than 6nm [10], which is due to SD tunneling as mentioned 
above. On the other hand, at high VG conditions, the two 
approaches become closer because thermal injection is a 
dominant carrier injection process at the on-state. Furthermore, 
the subthreshold swings (SS) are compared with the results 
from the ballistic NEGF method as shown in Fig. 8, where we 
also developed the NEGF program in this study. It is 
remarkable that the Wigner and ballistic NEGF results coincide 
closely for a wide range of gate length shorter than 10nm, 
which means that scatterings have a very small impact in the 
subthreshold region and also that SD tunneling is adequately 
simulated in the Wigner function model. Incidentally, it has 

been demonstrated that SS values are barely affected by 
scattering effects within RTA based on the semiclassical 
Boltzmann approach [11], and in this study we verified that it 
is true even when SD tunneling is incorporated by the Wigner 
approach. Therefore, the comparison with the ballistic NEGF 
method in the subthreshold region is reasonable. Further, from 
Fig. 8 the semiclassical simulation without SD tunneling 
(Boltzmann) might predict about 1nm shorter minimum gate 
length enabling us to make electrostatically “well-tempered” 
GAA-SNWTs with a SS less than 80mV/dec [12]. This 
discrepancy will be not negligible in practical design of 
SNWTs with sub-10nm channel length.  

At Present, the Wigner approach can not provide electrical 
characteristics around VG = 0V for the longer channel devices as 
found in Fig. 7. This is considered due to the lack of numerical 
accuracy under the high potential barrier situations. Thus, we 
need to develop more advanced computational techniques, such 
as more accurate discretization method and a proper connection 
with the boundary conditions, for reliable off-current 
estimation.  

IV. CONCLUSION 
We have developed a three-dimensional quantum simulator 

for SNWTs based on the Wigner function model, which can 
consider electrostatic gate control, two-dimensional quantum 
confinement and SD tunneling in GAA-SNWTs. Its validity 
was confirmed by the comparison with the semiclassical 
Boltzmann and NEGF approaches. As a result, SD tunneling 
can be a critical physical phenomenon related to a scaling limit 
of nanowire devices. We further pointed out that some 
advancements in the computational techniques are required to 
apply the Wigner function model to the off-current analysis.  
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Fig. 8 Gate length dependences of subthreshold swings 
computed by using the Wigner, Boltzmann and ballistic 
NEGF approaches. 
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Fig. 7 ID - VG characteristics for LG = 9nm, 6nm and 4.5nm, 
computed by using the Wigner and Boltzmann approaches. 
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