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Abstract—The confined states in [001]-oriented strained silicon
layers embedded in oxide are investigated using ’full-zone’
k.p analysis within the envelop function approximation and
Tight-Binding (TB) model. Calculations of important transport
parameters - energy band shifts and transport masses - show
new results, rising the issues of the limit of simple models like
the Effective Mass Approximation (EMA).

I. INTRODUCTION

Uniaxial stress engineering is a key technology to improve
MOSFETs performance [1]. When modeling the electrical
currents of such devices, it is required to take into account the
fundamental carrier transport properties (such as the transport
curvature masses and the energy gaps) that are governed
by the structure of the 2D electronic energy dispersion re-
lation. The ’full-band’ semi-empirical methods, such as the
LCBB [2] [3] [4], the Tight-Binding method (TB) [5] and the
30-level k.p -Schrodinger [4] [6] methods are well suitable
for the calculation of the confined states in a 2-D gas, but
require in general large computer resources. For that reason,
most of the mobility calculations available so far in strained
nMOSFETs rely on a two step procedure: in a first step the
band offsets and the curvature masses are calculated using
stress-dependent 3D bandstructure model and in a second step
the usual one-band-Schrodinger equation is solved in order to
obtain the confined states energy [1]. In this paper, we report
on the validity of this approach in Fully Depleted (FD) [001]-
Silicon-on-insulator nMOSFETs. Several cases are studied,
including channel orientation, electric field, layer thickness,
and eventually uniaxial stress.

II. COMPUTATIONAL METHODS

A. Luttinger-Kohn envelop function approximation

In the Luttinger-Kohn envelop function approximation [7]
(EFA) the electronic states of the nanostructure are expanded
in terms of the Γ-centered Bloch functions of the underlying
bulk semiconductor. In case of one-material approximation [6],
the k.p -EFA leads to ’multi-band’ k.p -Schrodinger-like
equations [6], which can be compared in a straightforward
way to the usual one-band-Schrodinger equation. Indeed the
same algorithm can be used with two different bulk models:

(i) EMA: The one band Effective Mass Approximation for
electrons that depends on a quantization mass mz [8].

(ii) Full-Zone k.p model [9]: The 30-bands k.p model [9]
that accounts for the conduction bands, but also for the valence
bands.

In the present calculations, the wave functions are expanded
in terms of trigonometric functions, which is an efficient way
to solve the k.p -Schrodinger equation [6]. In FD MOSFETs,
the Si layer is embedded in oxide and the electronic states are
confined in the layer by large Si/SiO2 band offsets. Within the
one-material approximation the confinement in the Si layer can
be obtained using an additional positive (negative) potential
VC = 3eV (VB = −4eV ) for the Conduction Bands (CB)
(and the Valence Bands) at the Si/SiO2 interfaces.
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(a) Bulk Silicon.
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(b) Uniaxially strained Silicon
with 3GPa stress applied along the
< 110 > direction.

Fig. 1: Silicon dispersion relation along high symmetry lines
in reciprocal space: Tight-Binding (lines), k.p (dots).

B. Tight Binding model

We now discuss a TB method for modeling thin and strained
silicon layers embedded in oxide. Our main goal is to compare
the solution from such an atomistic technique with those of
EMA, and full-zone k.p model within the framework of the
envelope-function. The first nearest neighbors sp3d5s∗ model
is one of the most accurate and efficient TB description of
semiconductor materials[10]. However, to perform a mean-
ingful comparison with the results of the full-zone k.p -
Schrodinger equation, the dispersion relations obtained with
theses two models should match as close as possible in bulk Si,
but also in strained Si. We used the new parametrization and
strain model detailed in Ref. [11]. The model parameters have
been fitted on reference abinitio Density-Functional Theory
simulations following an optimization strategy similar to the
one we used in the k.p model [9]. A very close agreement
between both models is obtained (as it is testified in Fig.
1) in terms of effective masses at valleys minima [12] and
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deformation potentials, but also concerning the overall shape
of the electronic energy dispersion (even at high energy or in
a strained crystal).
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Fig. 2: Sub-bands energy shifts of a [001]-oriented 2nm-thick
relaxed silicon layer as a function of the boundary condition
a) Valence bands, b) Conduction bands. The parameter Δsp

is the dangling-bond energy of the surface atoms (see text for
details). The arrows shows the sub-bands energy values when
the dangling bonds are connected to hydrogen atoms.

In the TB description of the layer, each atom of the silicon
crystal is considered and connected to its four neighbors,
except at the surfaces. Many surface states in the middle of
the gap are present unless passivation of these dangling bonds.
An efficient treatment of the surfaces states can be performed
by raising the energy of an hybridized orbital [13]. It is
also possible to connect these surface atoms to monovalent
atoms such as Hydrogen [5]. When the core Si layer is
surrounded by a large buffer (e.g. SiO2) the states are bond
in the active layer and are not impacted in principle by the
numerical treatment of the surfaces. The authors would like
to emphasize that it is not the case, when the dangling bonds at
the surfaces of the Si layer are directly passived by one of these
techniques. Fig. 2 shows the highest valence-sub-bands and
the lowest conduction-sub-bands energies at Γ in a 2nm-thick
silicon layer as a function of the hybridized orbital energy
Δsp (see Eq. 4 in Ref. [13]). Also shown in the figure are
the sub-bands energy levels obtained with a H-passivation of
the dangling bonds. Fig. 2 clearly shows that the energy at Γ
depends on the passivation model. This behavior is particularly
noticeable for the valence bands states. Indeed, interband-
coupling induced by the surfaces can significantly modify
the holes confined states energy at Γ (as well as the overall
shape of the dispersion relation -not shown). For electrons, due
to larger energy-band gaps, the surfaces-induced interband-
coupling seems less pronounced than for holes. It should be
noted nevertheless that the energy splitting of the lowest Δz

subbands at Γ, which is known as valley splitting [14], can
be inferred from the Δz-valleys coupling, and thus depend on
the passivation model. However, this splitting is small (e.g. in
comparison to the thermal energy) and can be neglected for
the analysis of electron transport in thin Si layers unless very

low temperatures are considered.
For the rest of this paper, because it is mostly focussed

on electrons, we will use the hybridized-orbital-passivation
model [15], with Δsp = 30 eV. We believe that this simple
approach captures the main features of the Si/SiO2 interface
(confinement due to large band offsets) without introducing
additional details such as coupling due to a change of the
crystallographic structure at the interface.
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Fig. 3: Electron confined states in a 2 nm-thick Silicon layer: a)
wave function square amplitude of the first level at Γ , b) wave
function square amplitude of the second (quasi-degenerate)
level at Γ , and c) wave function square amplitude of the first
level at Δx .

III. RESULTS AND DISCUSSION

A. Wave function

Fig. 3 (a,b) shows the wave function square amplitudes
for the two lowest quasi-degenerate conduction sub-bands
at Γ in a 2 nm-thick layer. The TB and k.p models give
consistent results. One notes in particular the oscillations of
the wave function (whose period is determined by the Δz-
valleys position along the Γ− Z axis), which is not observed
with the EMA model. A good agreement between models
is found, although the TB wave functions are evaluated at
the atoms positions (every a/4) only, while the k.p ones
exhibit continuous curves along the z−direction. Also shown
in Fig. 3 (c) are the wave function square amplitudes for the
lowest conduction sub-bands at Δx-valley minimum. Again,
one notes a good agreement between models, although the
wave function obtained with the present k.p model extends
slightly more outside the well than the ones obtained with
the two other models. This is consistent with the fact that the
k.p subband lowest energy is 46 meV lower than the TB one
(for comparison the EMA energy is 16 meV larger than the
k.p one).

B. Confined states energy and curvature masses

Fig. 4 (a) reports the shifts of the three lowest Δz-subbands
folded in the center of the 2D-Brillouin Zone [2] (for the
reason mentioned previously the valley-splitting is neglected)
and Δx,y-subbands minima as a function of the layer width.
As shown the EMA results superimpose very well with the
k.p ones (not shown are the TB results that are also in very
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Fig. 4: The conduction subband energy (a) and transport
masses (b,c) as a function of the width of the silicon [001]-
layer and typical distortions of the lowest Δy valley 2D-
subband energy dispersion relation (d). The zero-energy is
taken at the valley minimum, and the equi-energy contour plots
are spaced by 10meV.

good agreement with the k.p ones, specially for the lowest
energies). As it will be highlighted during the conference (and
already reported in a previous study [4]) this is not the case in
ultra-thin [001]-Germanium layers. In Ge, the discrepancies
between EMA and full-band models can be large due to a
significant coupling between the CBs states and the valence
bands states. Due to larger gaps in Si, the coupling is less
pronounced and the band shifts calculated with EMA are
accurate, even in very thin layer (2 nm).

When considering the transport masses along the channel
directions, the situation is nevertheless different. As it can be
seen in Figs. 4 (b and c) with both TB and k.p models, certain
transport masses can significantly increase when decreasing
the layer width [3]. It is notably the case with the Δy

valleys the structure of which exhibits a large change in highly
confined systems (as depicted in Fig 4 (d)).

The influence of an additional constant electric field (tri-
angular well) has been investigated and similar trends have
been found. Fig. 5 shows the conduction subband energy (a)
and the transport masses (b,c) as a function of an additional
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Fig. 5: The field-dependent conduction subband energy and
transport masses of a 5nm thick silicon [001]-layer, and
typical distortions of the lowest Δy valley 2D-subband energy
dispersion relation.

constant electric field value. Similarly to the results of Fig. 4, a
very good description of the energy shifts with EMA is found
although the transport masses can exhibit strong deviations
from their bulk values. This is illustrated e.g. in Fig. 5 (d) by
the distortions of the lowest Δy valley with the electric field.

C. Impact of uniaxial stress

A recent wafer bending experiment by Uchida et. al. [1] has
shown that uniaxial stress can improve the < 110 >-oriented
nMOSFETs performance. For that stress direction, the crystal
is sheared (εyz �= 0), and a large change in energy gaps
and masses can be observed (see Fig. 1). In Fig. 6 (a), we
have compared the confined states energy in a 5nm uniaxially
strained layer worked out with EMA (in which the strain-
induced band offsets have been preliminary calculated with
the 3D-k.p model [9]) and with the k.p -Schrodinger method.
The EMA reproduce fairly well the subbands energy shifts (as
shown somewhere else [16], this is not the case in strained
pMOSFETs). However, in Figs. 6 (b and c) we can see large
changes in transport masses. This effect, is particularly evident
for the Δz-valley in case of < 110 >-stress, and distortions
of the valley are shown in Fig. 6 (d).
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Fig. 6: The strain-dependent conduction subband energy (a),
transport masses (b,c), and distortion of the lowest 2D-subband
energy dispersion relation in a 5nm thick silicon [001]-layer.
The uniaxial stress is applied along the channel direction.

To further emphasize the importance of considering the full-
band structure of the 2D-system, when evaluating the transport
properties in highly confined systems, we have reported in Fig.
7, the transport masses along the < 110 >-direction as a
function of the electric field and the stress values, at the Δx,y

and Δz subband minima. Simulations have been performed
in a 5 nm-thick layer using the 30-level k.p model. One can
see that the change in curvature masses exhibits a coupled
behavior between strain and confinement. If one focusses
e.g. on the Δz-valleys, we can clearly see that the way the
curvature masses change with strain depends on the electric
field value. In absence of electric field, the curvature change
in the confined system is roughly identical to the bulk results
(results shown in [6]). However, at high electric field (i.e. hight
confinement) the change in transport mass due to uniaxial
stress is significantly larger than in the bulk case. These latter
results show that for highly confined 2D-electrons gas (large
electric field or in thin layers (L < 4nm) [6]), it can be
inaccurate to consider strain and confinement separately.

IV. CONCLUSION

In this paper we have investigated the validity of the
EMA for the calculation of the confined states in strained Si
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Fig. 7: transport masses along the < 110 > direction in a
5 nm-thick layer as a function of electric field and uniaxial
stress applied along the channel direction.

nMOSFETs. To this purpose the k.p -Schrodinger method
and the TB model was used to calculate the main parameters
that govern the electron density and transport in inversion
layers. For the energy shifts at the CB-valleys minima, a
good agreement between the predictions of EMA and full
band methods is found, even in very thin layers or in strained
devices. However, we report large changes (up to 100%) in
the transport masses with respect to their bulk values, rising
the issues of the limits of the widly used EMA in transport
calculations.
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