
Modeling Bias Temperature Instability During

Stress and Recovery

Tibor Grasser,∗ Wolfgang Goes,∗ and Ben Kaczer†

∗Christian Doppler Laboratory for TCAD at the Institute for Microelectronics, TU Wien

Gußhausstraße 27–29/E360, A–1040 Wien, Austria

Email: {grasser|goes}@iue.tuwien.ac.at
† IMEC, Kapeldreef 75, B–3001 Leuven, Belgium

Email: kaczer@imec.be

Abstract—Bias temperature instability has attracted a lot of
attention as a dominant degradation mechanism in modern
MOS transistors. Despite considerable effort, the exact physics
behind this mechanisms are still controversial. We discuss some
numerical aspects of our recently presented model which is
capable of reproducing the main features of the phenomenon.
Furthermore, we demonstrate how the model can be applied to
understand variations in nominally identically stressed devices
which have become important in the small area limit.

I. INTRODUCTION

Judging from the number of recent publications at leading

reliability conferences, bias temperature instability (BTI) is

one of the most researched reliability issues in modern MOS

transistors. Nevertheless, even after four decades of research, it

is still a highly puzzling phenomenon which has so far eluded

our complete understanding [1–3]. BTI is observed when a

large negative (or positive) voltage is applied to the gate of

a MOSFET which causes a shift of the threshold voltage

and other crucial transistor parameters. The degradation is

considerably accelerated at elevated temperatures. Particu-

larly intriguing are the complex degradation/recovery patterns

which are observed when the gate bias is modulated [4–6].

Understanding this behavior is mandatory for any estimation

of device degradation in a circuit setting.

An important aspect of the degradation is that it seems

to consist of a recoverable and a permanent component.

While the recovery which can cover a large range of time

scales, e.g. from 1 µs up to 1 Ms [7], has been unequivocally

observed by many groups, it is still under debate whether the

permanent component is completely permanent [1, 3]. Also,

there is a considerable controversy whether and how to map

each component on physical processes like hole-trapping and

interface state generation.

Quite contrary to recent experimental observations, most

modeling approaches published so far have focused on con-

stant gate bias stress and are remarkably oblivious to any

recovery of the degradation which sets in as soon as the

stress is removed. In particular, the popular reaction-diffusion

(RD) theory [8] has been shown to be inadequate [9] for the

description of BTI relaxation, see Fig. 1.

Most intriguingly, degradation data taken at different stress

temperatures and voltages appear to follow a universal pattern

[3]: at any stress and relaxation time the Vth shift can be
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Fig. 1: Relaxation of ∆Vth after 8 different stress times as predicted by
the reaction-diffusion model in comparison to measurement data. The poor
correlation of the RD model with the data is striking. In particular, the
measurement data behave like log(tr) over many decades in time while the
RD model predicts no initial recovery followed by a fast transition to zero
around trelax = tstress.

expressed as ∆Vth(T, Vs, ts, tr) ≈ s(T, Vs)∆V 0

th
(ts, tr), with

the universal function ∆V 0

th
containing the dependence on the

stress and relaxation times ts and tr an a prefactor s(T, Vs)
containing the temperature T and voltage Vs dependence. This

scalability strongly suggests that BTI is either the result of a

single process or of tightly coupled processes. In particular,

the previously suggested mere superposition of independent

hole-trapping and interface state generation mechanisms [1] is

incompatible to this observation.

II. THE TRIPLE-WELL MODEL

In a first attempt to construct a model that is able to

reproduce both a recoverable on top of a permanent component

while being compatible with the scalability property we have

recently suggested a triple-well energy model [10], see Fig. 2.

The model is based on the dissociation of Si–H bonds inside

the nitrided SiO2 insulator. As a result, positively charged

defects are created which lead to a shift of ∆Vth and other
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device parameters. The dissociation is assumed to proceed pre-

dominantly in two steps which are modeled via their energetic

configuration, where the lowest energetic position corresponds

to the silicon hydrogen bond (cf. Fig. 2). Upon application of

the electric field, H is moved to well 2 (transition from V1

to V3 over the barrier V2). Once in well 2, electrically active

states are assumed to appear inside the silicon bandgap [11]

and capture of a hole leads to a further reduction of the barrier

and complete dissociation of the hydrogen atom (transition

from V3 to V5 over the barrier V4). This second step has a

larger barrier and consequently leads to a more permanent

deviation from the equilibrium configuration. After removal

of the stress, particles residing in well 2 move back rather

quickly to the equilibrium configuration while particles in well

3 require considerably larger times.

The rate equations describing this dynamic process together

with the transition rates are given as

∂f1

∂t
= −f1k13 + f3k31 , (1a)

∂f3

∂t
= +f1k13 − f3k31 − f3k35 + f5k53 , (1b)

∂f5

∂t
= +f3k35 − f5k53 , (1c)

f1 + f3 + f5 = 1 (1d)

with the reaction rates

k13 = ν exp(−β(V2 − V1 − ∆2)) ,

k31 = ν exp(−β(V2 − V3 + ∆2)) ,

k35 = ν exp(−β(V4 − V3 − ∆4)) ,

k53 = ν exp(−β(V4 − V5 + ∆4)) .

The probability of the hydrogen atom being in well one is

given by f1, the probability of it being in well 2 and 3 f3

and f5, respectively, while having a defect is the probability

of the particle not being in well 1, thus 1 − f1. Furthermore,

we use 1/β = kBT and an attempt frequency ν ≈ 1013 s−1.

During stress, ∆2 and ∆4 describe the modification of the

barrier heights [12]. The equation system describing a single

reaction path is linear and easy to solve analytically.

Since the oxide is amorphous, the energies describing the

reaction path are assumed to be random variables [13], for

instance given as X = (V1, V2, V3, V4, V5). Other random

variables determining the properties of a possible reaction

path may be easily envisaged, for instance its orientation with

respect to the applied electric field, ϑ, and its distance from

the interface, x. The probability density of the reaction paths

is given by g(X) and consequently we obtain for the shift of

the threshold voltage

∆Vth(t) = −
q

Cox

∫

dX g(X)
(

1 − ∆f1(t,X)
)(

1 −
x

tox

)

.

(2)

In the following we assume the defects to be close to the

Si/SiO2 interface (x ≈ 0) and g(X) to be given by independent

Gaussian distributions.

The triple-well model is evaluated against measurement

data taken on tox = 1.4 nm oxynitrided MOSFETs. Excellent
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Fig. 2: The energy levels involved in the triple-well model. The second well is
energetically higher than the first and the third well and forms an intermediate
configuration. Transitions from the second well back to the first well are fast,
while the third well represents the permanent component/lock-in.

agreement has been found during both stress and recovery,

after positive and negative bias stress, during mixed positive

and negative stress, and during duty-factor dependent stresses

[10], see Figs. 3 and 4 for selected examples. Here we further

explore some features of the model along with its numerical

properties.

III. NUMERICAL SOLUTION PROCEDURE

Depending on the number of random variables, direct dis-

cretization of (2) leads to a very large number of equation

systems of the form (1). For instance, assuming that every ran-

dom variable is discretized using 20 points, we have to solve

8.000 equations for X = (V2, V3, V4) but already 160.000 for

X = (V2, V3, V4, V5) and more than 3 millions for 5 random

variables. In addition, direct discretization of a large number

of random variables leads to undesired correlations between

the reaction paths. As an example, a too crude discretization of

V2, the barrier that dominates the initial degradation behavior,

gives unwanted ’steps’ in the initial simulation result, despite

the large total number of reaction paths (see Fig. 5).

We therefore proceed as follows: Rather than looking for a

rigorous solution of (2), the correct limit for an infinitely large

(nominal) device, we solve (2) using a statistical approach

under consideration of the real device dimensions. Assuming

an effective maximum defect density of 1013 cm−2, we obtain

for our devices with A = W × L = 100 nm × 1 µm a

total number of possible defects equal to N ≈ 104. The

dissociation path associated with each defect will be slightly

different and is determined independently from the other paths.

Summation of the contributions from the individual reaction
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Fig. 3: Evaluation of the triple-well model (solid lines: total degradation,
dashed lines: ’permanent’ component in well 3) against the same data as in
Fig. 1. Note that all data were recorded in a single measurement sequence
which was interrupted 8 times to record the relaxation data (same stress
times as in Fig. 1). For the model evaluation the measurement sequence was
simulated using fixed parameters in a single simulation run, just like the
real measurement. Top: Excellent accuracy is obtained for two temperatures
during the relaxation phase. Bottom: The threshold-voltage shift predicted by
the triple-well model is also in excellent agreement during each stress phase
(same symbols and colors for the stress curve preceding the relaxation phase
in the left figure). Also, the initial delay in the first measurement was taken
into account by subtracting ∆Vth(1 ms) from the simulation result.

paths following

∆Vth(t) = −
q

Cox

N
∑

i=1

(

1 − ∆fi,1(t)
)(

1 −
xi

tox

)

. (3)

then gives the total device degradation. Depending on the seed

of the random number generator used to create the random

configurations, a slightly different ∆Vth under the same stress

conditions is obtained from (3). However, for sufficiently large

N , (3) gives an excellent approximation of (2).
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Fig. 4: The triple-well model can also be used to describe PBTI stress.
During positive bias stress, less permanent degradation is created. Note that
PBTI stress also creates positive charge and thus a negative ∆Vth, just like
NBTI.
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Fig. 5: Influence of the number of discretization points on the initial
response of the triple-well model. When a small number is used, the individual
transitions of each well from its equilibrium configuration to the final
stress equilibrium configuration becomes clearly visible. A large number of
discretization points, on the other hand, leads to an excessive number of
reaction paths.

IV. SMALL AREA DEVICES

For small area devices, however, device-to-device variations

do exist and a deviation from the nominal behavior is ob-

served. These stress-induced intrinsic fluctuations are a real

concern for analog-matched pMOSFETs and SRAM stability

[14]. Being caused by discrete charges homogeneously dis-

tributed underneath the gate [15], their variance scales with

σ2(∆Vth) ∼ 1/A ∼ 1/N , just like random-dopant-induced

fluctuations [15, 16]. This is consistent with the nominal

behavior that is obtained for a reasonably large N .

In our model device-to-device variations can be naturally

4-2-3



reproduced by considering a small number of possible defects.

For example, in [14] devices of the dimension W × L =
90 nm × 37 nm were studied, resulting in N ≈ 300 possible

defects. As shown in Fig. 6, for such small-area devices, the

simulated standard deviation can be around 10 mV, consistent

with measurement results [17], a considerable value keeping

a typical failure criterion of ∆Vth,max = 100 mV in mind.

Experimentally observed features [17] such as σ(∆Vth) ∝
√

µ(∆Vth)/N are well reproduced by the triple-well model.

V. CONCLUSIONS

We have presented and discussed characteristic features

of a novel model for the degradation of pMOS transistors

subject to bias temperature stress. In contrast to available

models, our new model accurately describes the phenomenon

not only under constant bias stress, but also during recovery,

during and after mixed negative/positive stresses, and the

experimentally observed duty-factor dependence. In addition,

we have presented a computationally efficient solution strategy

which intrinsically takes the important random variations into

account, which where found to be in good agreement with

literature data.
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