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Abstract- Coherent transport in mesoscopic devices is well
described by the Schrodinger equation supplemented by open
boundary conditions. When electronic devices are operated at
room temperature, however, a realistic device model needs to
include carrier scattering. In this work the kinetic equation
for the Wigner function is employed as a model for quantum
transport. Carrier scattering is treated in an approximate manner
through a Boltzmann collision operator. A Monte Carlo technique
for the solution of this kinetic equation has been developed,
based on an interpretation of the Wigner potential operator as a
generation term for numerical particles. Details on the algorithm
for particle generation and subsequent particle annihilation are
presented. Including a multi-valley semiconductor model and
a self-consistent iteration scheme, the described Monte Carlo
simulator can be used for routine device simulations. Applications
to single barrier and double barrier structures are presented.

I. INTRODUCTION

For FETs with gate lengths below 10 nm quantum effects
such as direct source-to-drain tunneling become important and
start affecting the device characteristics [1]. Recent studies
show that scattering will still affect the current [2] and that
the transition to ballistic transport appears at much shorter gate
lengths than previously anticipated [3]. An accurate theory of
MOSFETs near the scaling limit must therefore account for
the interplay between coherent quantum effects and dissipative
scattering effects. This mixed transport regime can suitably
be treated by the Wigner equation. Early numerical solutions
of the Wigner equation were obtained using finite difference
methods, assuming simplified scattering models based on
the relaxation time approximation [4]. However, for realistic
device simulation more comprehensive scattering models are
required. With the advent of Monte Carlo (MC) methods for
the Wigner equation [5], [6] it became feasible to include
the full Boltzmann collision operator. The development of
MC methods for the Wigner equation, however, is hampered
by the fact that, as opposed to the semi-classical case, the
integral kernel is no longer positive. This so-called negative
sign problem will lead to exponentially growing variances of
the Markov Chain MC method. The Wigner potential operator
can also be viewed as a generation term of positive and
negative numerical particles. In this picture the sign problem
shows up in the avalanche of numerical particles generated.
A stable MC method can only be achieved by means of a
suitable particle annihilation algorithm.

II. THE PHYSICAL MODEL

Quantum transport is modeled by a time-independent, one-
electron Wigner equation for a multi-valley semiconductor.
The set of Wigner equations is coupled through the inter-valley
phonon scattering terms.
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This equation determines the Wigner function ft for valley
v. A valley's energy dispersion relation cv(k) is assumed to
be anisotropic and parabolic. Note that a non-parabolic e(k)
relation in the single-electron Hamiltonian would give a non-
local diffusion term of the form f c(k, r-r')fv(k, r')d3r'.
Although it is straightforward to use a non-parabolic relation
in (1), one should be aware that this would approximate the
non-local diffusion term by a local one of the form VkEv Vrf.
A spectral decomposition of the potential profile V(r) is

applied [7]. The slowly varying component gives the classical
force F, whereas the rapidly varying component is taken into
account through the Wigner potential V,.

V(r) = Vcl(r) + Vqm(r),

V, (q, r) =
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In (1) scattering is treated semi-classically through a Boltz-
mann collision operator, where the transition rate Sv,, (k, k')
from initial state (v', k') to final state (v, k) is given by Fermi's
golden rule. It should be noted that usage of the Boltzmann
collision operator in the Wigner equation represents some ad
hoc assumption. A rigorous treatment of electron-phonon scat-
tering would require a frequency-dependent Wigner function,
f (k, r, w). It is related to the non-equilibrium Green's function
G< by G< (r, k, w) = if (k, r, w) and can reasonably be
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approximated as f (k, r, w) = f, (k, r)A(r, k, w) [8]. To arrive
at Fermi's golden rule the spectral function A is reduced to
the Dirac 6-function.

Furthermore, in (1) the Pauli blocking factor the equilibrium
Fermi function f,° is used. The assumption of a Boltzmann
collsion operator in (1) ensures that in the semiclassical
regions, such as the highly doped contact regions, the con-
ductivity is finite and that the mean energy increase due to
degeneracy is taken into account.

III. NUMERICAL METHODS
A stationary MC method for solving (1) has been reported in

[5]. The potential operator e [f1] = f V,(k -k')f(k', r)d3k'
is interpreted as a generation term of numerical particles.
The strict mass conservation property of this operator can
be satisfied by the numerical particle model exactly if one
generates the numerical particles only pair-wise, for instance,
with statistical weights +1 and -1. As pointed out in [5], a
suitable annihilation algorithm for numerical particles needs
to be introduced in order to achieve a stable MC method.
Since one can devise various algorithms for particle generation
and, in particular, for particle annihilation, in the following the
latest developments are described.

A. Particle Generation
A direct numerical representation of the Wigner potential

V, (q, r) would require the discretization of both momentum
and space coordinates. The problem can be simplified by
expressing the Wigner potential in terms of V(q), the Fourier
transform of the potential Vq/m(r). The potential operator can
be rewritten as follows.

Ow [fw] (k, r) = (27)3h J V(q) sin [f(q) + q r]

x (fw (k -qr t) f- (k+ q,r,t)) d3q (2)

An advantage of this formulation is that no discretization of the
spatial variable r is needed. The expression can be evaluated at
the actual position r of a particle. Only the momentum variable
q needs to be discretized in order to numerically represent IV,
the modulus, and o, the phase of V.

The structure of (2) suggests the usage of a rejection
technique. As a normalization quantity one obtains an upper
limit for the pair generation rate.

'Ymax (2w)3h J V(q) dq (3)

At a rate of 'Tmax the free flight of a particle is interrupted
to check for particle pair-generation. From the distribution
IV(q)l one generates randomly the momentum transfer q.
Then the sine function is evaluated at the actual particle
position r as s = sin [p(q) + q r]. With probability s the
pair-generation event is accepted, otherwise a self-scattering
event is performed. In the former case, two particle states are
generated with momenta k, k -q/2 and k2 = k + q/2
and statistical weights w = wosign(s) and w2 = -WI,
respectively, where w0 is the statistical weight of the initial

particle. Since (2) is local in real space, the particle pair is
generated at the position r of the initial particle.

B. Particle Annihilation
Different variants of the single-particle MC method out-

lined in [5] can be devised. The variant discussed below is
constructed such that current is conserved exactly. The only
input parameter required is the ratio of negative and positive
trajectories, which makes the algorithm easy to control. The
idea is that from the trajectory tree generated by a particle
injected at the contact only one branch is actually traced.

For steady state problems considered here a phase space
mesh can be utilized, on which numerical particles are tem-
porarily stored. After each generation event one has to deal
with three particle states, namely the initial state k and the two
generated states, k, and k2. In a first step all three particles
are stored on the annihilation mesh, that is, the statistical
weight of each particle is added to a counter associated
with the mesh element. Then one has to decide which of
the three states is used to continue the trajectory. One may
choose the weight of the particle continuing the trajectory
to be of the same sign as the incoming one (Fig. 1). In
this way the statistical weight along one trajectory does not
change, which results in exact current conservation. If the
initial state has a positive statistical weight, out of the three
mesh elements one selects that with the largest stored weight.
Continuing from that element will reduce the weight of the
element. Conversely, a negative trajectory is to be continued
from the element with the smallest stored weight. A certain
fraction of negative trajectories needs to be constructed in
order to resolve the negative parts of the Wigner function.
This rule for selecting the continuing particle is an attempt to
minimize the weights stored in the three elements after each
pair-generation event. The repeated execution of this rule in
the MC main loop results in a minimization of the stored
weight on the whole annihilation mesh. Particle annihilation
takes place when positive and negative particles are alternately
stored in the same mesh element. Note that because of the
mass conservation property of the transport equation and of
the associated particle model, no net-charge can build up on
the annihilation mesh. The weights stored on the mesh sum up

Fig. 1. The particle annihilation strategy attempts to minimize the weights
stored in the mesh elements. The weights of the initial and continuing particle
have the same sign to ensure current continuity. Particles and mesh elements
carrying a positive weight are in black, the ones carrying a negative weight
are in grey.
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to zero. The local weights on the mesh have to be kept small,
as they are a measure for the numerical error of the method.
This can be controlled by the fraction of negative trajectories,
which has to be specified by the user.

Considering Fig. 1, one can develop also the following
notion of the algorithm. Positive and negative particles are sent
through the device and interact with the annihilation mesh.
A positive particle is likely to recombine in a phase-space
region where the weight stored on the mesh is negative. This
means that a positive particle is likely to propagate in those
regions where the stored weight is positive. It is unlikely to
recombine there, because this would result in an increase in
local weight, which would contradict the local minimization
principle. For the same reason, a negative particle will be
attracted by regions with negative stored weight. Although the
transition probabilities used to propagate the particles are the
same for positive and negative particles, the interaction with
the annihilation mesh causes the trajectories for positive and
negative particles to be systematically different.
An annihilation mesh is introduced for each valley-type. For

the three pairs of X-valleys of Si three meshes are required.
The meshes are defined in the three-dimensional phase-space,
spanned by one spatial and two momentum coordinates.

C. Coupling to Poisson Equation

A self-consistent iteration scheme between Wigner MC and
the Poisson equation is implemented. The adopted scheme,
which is similar to the Gummel iteration scheme for the basic
semiconductor equations [9], is commonly used in classical
one-particle MC simulations [10]. Fig. 2 shows the iteration
history of the current through a Si n-i-n diode for different
widths of the intrinsic region. Currents computed using Wigner
and classical MC show similar convergence behavior.

IV. RESULTS AND DISCUSSION

The described MC method can be used for routine device
simulations. For the purpose of verification, the first example
assumes a frozen potential profile from a 10nm gate length
double-gate MOSFET. Fig. 3 compares the quantum ballistic
currents as obtained from a collision-less Wigner MC simula-
tion and from a numerical Schrodinger solver. Good agreement
is observed. The quantum ballistic current is higher than the
classical ballistic current due to an additional contribution
from carriers tunneling through the potential barrier.

To study the effects of scattering and tunneling on the device
characteristics we consider Si n-i-n diodes with the length W
of the intrinsic region ranging from 20 nm down to 2.5 nm. The
doping profile is assumed to increase gradually from the intrin-
sic region to the highly doped contact region over the same

distance W. Three transport models are compared: Wigner
equation and Boltzmann equation with electron-phonon and
ionized-impurity scattering included, yielding currents IWIG
and IBTE, respectively. The Wigner equation without scattering
inside the intrinsic and transition regions gives the current
ICOH (coherent). Fig. 4 shows that the effect of scattering
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Fig. 2. Cuffent through Si n-i-n diodes as a function of the number of
self-consistent iterations with the width of the intrinsic region as a parameter.
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Fig. 3. Normalized ballistic currents calculated classically and quantum
mechanically. Results from Wigner MC and the Schrodinger solver are in
good agreement. The potential profile is obtained from a device simulation
of a 10nm gate length DG MOSFET.

reflected in the difference ICOH -IWIG decreases with decreas-
ing device length. However, even for W = 2.5 nm the relative
difference in the currents is still of the order of 25%, indicating
that scattering cannot be neglected. Also shown is the current
difference due to tunneling, IWIG -IBTE. Clearly, this current
component rises with reduced barrier width.

The next example shows results of self-consistent Wigner-
Poisson simulations of a double-barrier tunneling structure. A
GaAs/AlGaAs resonant tunneling diode (RTD) is investigated,
assuming a barrier height of Eb = 0.3 eV, a barrier width of
3 nm, and a well width of 5 nm [5], [11]. Polar optical phonon,
acoustic deformation potential and ionized impurity scattering
are included. Fig. 5 shows the effect of degeneracy, which
is introduced in the simulation by the approximated Pauli
blocking factors in (1) and through the boundary distribution
at the contacts, on the current-voltage characteristics.
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Fig. 4. Relative difference between currents of an n-i-n diode calculated
using different transport models: Wigner MC with and without scattering in
the intrinsic region (squares); Wigner MC and classical MC (diamonds).
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Fig. 5. I-V characteristics of a GaAs resonant tunneling diode at 300 K
with scattering from PO phonons, acoustic phonons and ionized impurities
included.

Fig. 6 shows the kinetic energy density of electrons in the
RTD. In terms of wave functions fij, the eigen energies Ei,
and the probabilities pi, the kinetic energy density is defined

as follows.

w(r) = Zpi(Ei- V(r)) 4Fj(r) 2 (4)

This density can become negative in tunneling regions where

the energy of one or more states is below the band edge, Ei <
V(r). Transformation of (4) into the Wigner representation
gives [12]

w(r) = (2w)3]/ 2m*knY Vr2) fw(k: r, t) d3k . (5)
4 r

Fig. 6. Mean kinetic energy of electrons in a resonant tunneling diode
calculated from (5). In the tunneling barriers the mean kinetic energy is
negative.

tional to the second derivative of the electron concentration is
required.

V. CONCLUSION

A Monte Carlo simulator performing a self-consistent nu-

merical solution of the Wigner equation has been presented.
Details of the algorithms for generation and annihilation of
numerical particles have been described. The quantum MC
method turns gradually into the classical MC method when the
potential profile becomes smoother. Therefore, the simulation
method can be used, for instance, to study the gradual emer-

gence of quantum effects when a device structure is scaled
down.
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