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Abstract— A new statistical model accurately reproducing the
result of the Monte-Carlo (MC) simulation is proposed for the
analysis of the SILC distribution of flash memory. From the pre-
calculated probability density distributions (PDD) of the current
through one multi-trap (1-trap and 2-trap) path, the current
PDD of the cell is obtained using the convolution theorem and
compared with the result of MC simulation. Current PDD of the
cell is found to be very sensitive to the spatial distribution of
traps.

I. INTRODUCTION

Charge retention is one of the most important reliability
issues of flash memory. The retention failure is attributed to the
large SILC through the multi-trap paths in the oxide stressed
by program/erase (P/E) cycling [1]-[3]. A number of models
have been proposed to analyze the trap generation statistics and
predict the lifetime of memory in the aspect of retention [4]—
[6]. Also, the dependence of SILC distribution on trap volume
density, energy and capture cross-section was investigated by
MC simulations whose sampling numbers were 107 [3]. Most
of models, however, assumed that the traps were distributed
uniformly in the oxide and no result has been reported for the
effect of spatial distribution of traps on the SILC distribution
of the cell.

Driussi, et al. [7] showed that the current PDD of the cell
having only 1-trap paths can be obtained from the average
number of traps in the cell and the current PDD of one 1-trap
path.

In this paper, we generalize the model suggested by Driussi,
et al. [7] to calculate the current PDD of the cell having not
only the 1-trap paths but also the multi-trap paths consisting
of two or more traps. Since MC simulation is very time
consuming, the proposed model is used to study the effect
of spatial distribution of oxide traps on the SILC distribution.

II. STATISTICAL MODEL

Since the oxide traps have been believed to be randomly
generated by the electrical stress [8], we assume that the trap
generation follows the Poisson’s statistics. Therefore, the traps
generated during the stress are not correlated one another.

If there are ny k-trap paths, where the k-trap path is defined
as the conductive path consisting of k traps in the oxide, the
current PDD [, (I|ny) of the cell having ny k-trap paths can be
obtained as the convolution of the current PDD fi,([|n; — 1)
of the cell having (ng-1) k-trap paths and the current PDD
Sfu(I|1) of the cell having only one k-trap path.
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felllng) = frelllng — 1) * fi(I]1)
I

= /fk(1|nk—1)fku—p|1)dp. 0
0

Since the current PDD fi(I|ny — 1) can be also obtained
as the convolution of fr(I|ngy —2) and fi(I|1), the current
PDD f;(I|ng) of (1) can be rewritten as

ng

where fi(1]0) is the current PDD of the cell having no k-trap
paths. If the current fluctuation of the cell, where no conductive
paths are formed during the stress, is negligibly small, f;(/]|0)
can be expressed as

fi(110) = 6(1) 3)

where 6([) is the Dirac delta function of current /. Then, the
current PDD f,(/|ny) can be obtained from the convolution
of fr(Z]1) by ny times.

Let Fy(w|ng) and Qp(w) be the Fourier Transform of the
current PDD fr(I|ny) and fi(I|1), respectively. Using the
convolution theorem, Fy(w|ny) can be written as

By summing over ny from O to oo for the current PDD’s
Sfu(I|ny) weighted by the conditional probability p(ng|k) of
the cell having ny k-trap paths, the current PDD f;([) of the
cell having k-trap paths is obtained as

Fe@) =D felTlng)p(nelk). (5

nk:O

Let Fi(w) be the Fourier Transform of the current PDD
fr(I). From (4) and (5), Fj(w) can be written as

Z Fy(wlng)p(nglk)

np=0

S Qe X,

Fiy(w)

np=0

—  AR(Qr(w)—1) (6)
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where Ay is the average number of k-trap paths in the cell
and the conditional probability p(ng|k) is obtained from the
Poisson’s statistics with the average number Ay.

Since there can be many different types of conducting paths
in the cell, e.g. 1-trap path, 2-trap path, etc., the current PDD
f(I) of the cell can be obtained as the convolution of the
current PDD of each conducting path as

FA) = fl)xfoll)x - fio(I) * -+
- [Z f1(f|n1)p(n1|1)] * [Z f2(1|n2)19(n2|2)]
n1=0 ngo=0
ook [Z fk(I|nk)p(nk|k)1 £ (7)
np=0

Using the convolution theorem, f(I) can be rewritten as

J) = Fi {ﬁ 6>\k(Qk(w)1)}
k=1

where F ! is the inverse Fourier Transform.

(8)

III. AVERAGE NUMBER A; AND CURRENT PDD f;(/]1) OF
ONE K-TRAP PATH

In this paper, we restrict our concern to the 1-trap path
and 2-trap path because the 2-trap conductive path has been
known to be attributed to the anomalous SILC of fail bits in
the flash memory [1], [4]. If the interface planes of the anode
and the cathode are parallel each other and there is no potential
difference in each plane, the traps will be generated uniformly
in the plane parallel to the interface.

Fig. 1(a) shows the typical 1-trap and 2-trap path in the
oxide. Depending on the construction of 2-trap paths, 2-trap
assisted tunneling (two-TAT) current can be larger or smaller
than the 1-trap assisted tunneling (single-TAT) current. If we
suppose that the current through the path is determined by the
longest trap-trap or trap-interface distance [2], 2-trap path can
be defined as the path whose trap-trap distance is shorter than
the longest trap-interface distance of each 1-trap path so that
the current flowing through two traps sequentially is higher
than the sum of currents flowing through each trap.

As mentioned above, oxide traps can be assumed to be
uniformly distributed in the transverse directions (x-y plane
in Fig. 1(a) and (b), where the electric field is applied to
z-direction) to the electric field. Let g;(21) be the group of
the 1-trap paths whose z-positions are z; regardless of their
coordinates (x1, y1). The paths belonging to gi1(z1) show the
same single-TAT current /1 (z1 ). Since the traps are uniformly
distributed in the x-y plane, the normalized probability p1(z1)
of group g1(z1) can be expressed as

p(z1)

PiE) =

From the current /1(z1) of each group and the normalized
probability p1 (z1), the PDD of the single-TAT current f; ([]1)
can be obtained.

)
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Fig. 1. (a) Configuration of 1-trap path and 2-trap path. (b) Configuration
of 2-trap paths showing the same current.

Fig. 1(b) represents the typical group of 2-trap paths show-
ing the same two-TAT current. Let go(21, d12, ) be the group
of 2-trap paths in which the z-location of one trap is 21, the
distance between traps is dis, and the angle of the line con-
necting two traps to the z-axis is #. The normalized probability
pa(21,d19,8) of group go(z1, dyo, ) can be expressed as

_ 27dyo sin(0)p(z1)p(22)
Doy Dy 2o 2mdiasin(@)p(z1)p(22)

where dig = /(@2 —21)2 + (y2 —91)? + (320 — 21)2.
Similar to f1(/|1), the PDD of the two-TAT current fa(/|1)
can be obtained from the current I5(z1,d19,0) and the nor-
malized probability po (21, d19, ) of each group.
Meanwhile, the average number A\; of 1-trap paths and the
average number A\, of 2-trap paths can be obtained as

pa(z1, dy12,0) (10)

Moo= Y p(z)DiVo (11)
Ay = ZZZ27’FCI12Sin(@)p(zl)p(ZQ)(Dt‘/o)z(12)

zZ1 22 [%

where D, is the trap volume density and Vj is the volume of
the oxide.

IV. SIMULATION RESULTS AND DISCUSSION

The area and the thickness of the tunnel oxide are 0.06pm?>
and 6.5nm, respectively. The doing densities of the substrate
and the gate are 10'7cm™> and 10?°em ™3, respectively. The
gate voltage (V) is fixed to 4.0V. Traps are of donor type and
their energies are 3.65¢V below the edge of conduction band
of oxide.

Using the TAT models [1], [9] in the literature, where
the capture cross-section o, is 10~ '*c¢m? and the detrapping
time 7. is 107! sec [1], single-TAT currents and two-TAT
currents are calculated. The potentials at the interfaces are
obtained from the Poisson-Schrodinger Solver of in-house de-
vice simulator NANOCAD [10], and the tunneling probability
is calculated using WKB approximation.

To investigate the effect of spatial distribution of traps on
the SILC distribution of the cell, traps are assumed to be
distributed exponentially as

exp(—|toe/2 — 24|/ X¢)
p(Zt) - 2)\t(1 — eXp(_toz/2)‘t))

(13)
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Fig. 2. The spatial distribution of traps.
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Fig. 3. Survival functions of cell currents calculated by the proposed model
(thin line) and by the Monte-Carlo method (bold line).

where A; is the characteristic length representing the exponen-
tial variation near the center of the oxide. If A; > 0, the density
of traps is maximum at the center of the oxide and decreases
exponentially with the distance from the center. In contrast, if
Ar < 0, the density of traps is maximum at the interfaces and
decreases exponentially with the distance from the interface
as shown in Fig. 2. As |\;| decreases, the decrease rate of the
trap density increases with the distance from the position of
the maximum trap density.

Fig. 3 shows the survival functions of the cell currents
calculated by the proposed model and by the Monte-Carlo
(MC) method (10° samplings for the case of uniformly dis-
tributed traps whose volume density D;=10%cm 3, and 10°
samplings for others). The statistical model reproduces the
results of MC simulation accurately regardless of the volume
density and the distribution of traps except the case of high
volume density of traps (D;=10'"cm~3). Fig. 4 explains why
the current distribution of the statistical model is shifted toward
the lower current region compared to that of MC simulation
when D,=107e¢m 3. In the statistical model, there can be
some traps which do not form the multi-trap path with the traps
of the adjacent paths because the distance from the traps of the
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Fig. 4. Current flow through the three adjacent traps (a) in the statistical
model and (b) in the MC simulation.
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oxide.

Survival function of cell current for various trap distribution in the

adjacent paths is longer than the longest trap-interface distance
of each trap as shown in Fig. 4(a). In the MC simulation,
however, all possible current paths are considered as shown in
Fig. 4(b). Therefore, the current calculated by the statistical
model will be smaller than that of MC simulation, and the
current distribution of the cell moves slightly toward the lower
current region in the statistical simulation.

Fig. 5 shows the current PDD f(I) of the cell with two
components, the current PDD f1(7) of 1-trap paths and the
current PDD fo(7) of 2-trap paths. Using the proposed model,
the contributions of 1-trap paths and that of 2-trap paths can
be analyzed separately.

Fig. 6 shows the effect of the characteristic length A, on
the distribution of the cell current. Compared to the uniform
distribution (A\;=00), the current PDD f(I) of the cell becomes
small as |A;| decreases if A; < O (trap density is maximum
at the interface). On the contrary, if A; > 0 (trap density is
maximum at the center of oxide), the current PDD f, (1) of
1-trap paths becomes large as |A:| decreases, but the current
PDD fy(I) of 2-trap paths increases and then decreases as
|X¢| decreases. These results can be easily explained with
the worst-case 1-trap path and 2-trap path [4]. The worst-
case path is defined as the path whose current is the largest
among the currents of the paths. If the tunneling probability
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Fig. 6. Survival function of cell current for various trap distribution in the
oxide.

is the exponential function of the longest trap-trap and trap-
interface distance, the trap position of the worst-case 1-trap
path is (t,,/2) and the trap positions of the worst-case 2-
trap path are ({,,/3) and (2¢,,/3) approximately. As [\
decreases, the probability densities p(t,./2), p(ts:/3) and
p(2t,,/3) decreases if \; < 0. Therefore, the current PDD
f(I) decreases as |A;| decreases if A\; < 0. In the case of
positive A, the probability density p(¢,,/2) increases as |A;|
decreases. So, the current PDD f; (1) of 1-trap paths increases
as |A¢| decreases. But, the probability densities p(t,5/3) and
p(2t,,/3) increases and then decreases after arriving the peak
as |\¢| decreases. Hence, the current PDD f5 (1) of 2-trap paths
increases and then decreases as |\;| decreases.

V. CONCLUSIONS

In this paper, we propose a new statistical model to calculate
the current PDD of the flash cell from the trap distribution
in space. The proposed model reproduces the results of MC
simulation accurately if the trap volume density is less than
107 em 3.

Using a new statistical model, we investigate the depen-
dence of the current PDD f(I) of the cell on the trap
distribution in the oxide. The PDD of the cell current is found
to be very sensitive to the spatial distribution of the traps. In
our model, the current PDD f([1) of the cell is composed of the
two components, the current PDD f; (/) of 1-trap paths and
the current PDD fo(1) of 2-trap paths. Therefore, it is possible
to analyze the contributions of 1-trap paths and 2-trap paths
separately.

Our statistical model is more efficient than the MC method
for the calculation of the statistical properties of the rare events
such as the retention failure of flash memory whose failure
rate is less than 1075, In the MC simulation, more than 107
of samplings have to be performed to guarantee the probability
of 1075, This is very inefficient and time consuming. Hence,
our statistical model can be used as a useful tool to analyze
the reliability issues.
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