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Abstract-A TCAD framework that can predict the phase
noise spectrum of the oscillator using the nonlinear perturbation
analysis is developed. The device-circuit mixed-mode simulation
technique based upon the shooting-Newton method is exploited
to evaluate the periodic steady-state solution of the oscillator.
The influence of noise sources inside the devices on the phase
deviation is calculated in an efficient and accurate way using
the perturbation projection vector. The output power spectrum
can be easily obtained in this framework. As its application,
the output power spectrum of a CMOS LC voltage-controlled
oscillator is calculated.

I. INTRODUCTION
An accurate phase noise simulation of CMOS RF oscillators

is very important to design low-noise CMOS RF communica-
tion systems. In this work, we have developed a comprehensive
TCAD framework that can predict the phase noise spectrum
of the oscillator using the nonlinear perturbation analysis [1].
The device-circuit mixed-mode simulation technique based
upon the shooting-Newton method has been exploited to obtain
the periodic steady-state solution of the oscillator. With this
framework, the influence of noise sources inside the devices
on the oscillator phase noise spectrum can be calculated in an
efficient and accurate manner by the use of the perturbation
projection vector. The output power spectrum can be easily
obtained in this framework.

II. DEVICE-CIRCUIT MIXED-MODE SIMULATION FOR
OSCILLATORS

We consider a circuit system consisting ofM semiconductor
devices and L lumped circuit elements. A lumped circuit ele-
ment can be fully characterized by the relationship between its
terminal voltages and currents. The semiconductor equations
(Poisson's equation and continuity equations for electrons
and holes) with the appropriate boundary conditions for each
device in the circuit are discretized as in the conventional
device simulators. Then the state variables for the system are
the electrostatic potential, the electron density, and the hole
density at each node of the spatially discretized devices, and
the terminal voltages and currents of both the semiconductor
devices and the lumped circuit elements. The total number of
the state variables is denoted by Nt,t.

The state equations for the state variables are the semi-
conductor equations for the devices, the constitutive equations

for the lumped elements, and the Kirchhoff's current law
(KCL). If we write the state variables as x(t) in a vector form,
these Nt,t state equations can be written as follows [2]:

d
dtQx +() bxt(t) + bnj(t), (1)

where t is the time, bext (t) is a vector for the externally
applied voltage (or current) sources, and b, (t) is a vector
representing the noise sources. Q(x) and J(x) are usually
nonlinear functions.
Now, let us find xs (t) that is a periodic steady-state solution

without the noise source vector b,(t), i.e.,

dtQ(xs(t)) + J(xs(t)) = bext. (2)
The shooting-Newton method is an iterative procedure layered
on top of transient analysis, which is designed to solve the
following boundary-value problem,

Xs(To) -XS() = 0, (3)

where To is the oscillation period. After the transient sim-
ulation during the time interval To is performed, an update
vector for x5(U) is calculated by solving (3) with Newton's
method, and this procedure is repeated until the initial value
xs(0) and the final value xs(To) become eventually identical.
In this work, the "matrix-free" shooting-Newton method [3],
where an iterative matrix solver GMRES [4] is used, is
implemented to find xs(t). In the oscillator, the oscillation
frequency cannot be determined a priori before the simulation.
Thus the oscillation period To is added to the state variables
and an additional "phase-fixing" equation is also introduced
in the state equations [5].

III. NONLINEAR PERTURBATION ANALYSIS OF
OSCILLATOR NOISE

We consider the perturbed solution x(t) from the unper-
turbed solution xs (t) by the influence of the noise source
vector b (t). Since there is no perfect time reference in the
oscillators, the vector for the state variables xs (t + to), which
is shifted from xs (t) by an amount of time interval to, is also
another periodic steady-state solution. Therefore, for the noise
simulation of the oscillator, an additional "phase deviation"
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term a(t) should be introduced, and the perturbed solution
x(t) is expressed by [6]

x(t) = x5(t + a (t)) + y(t + a (t)), (4)
where y(t + a(t)) is the "small" orbital deviation, often
neglected in phase noise analysis [1], [7].
We use the following equation and the boundary condition

for a(t), which is widely accepted to be most suitable for
many applications [8]:

d
dat) vT(t + a(t))B(xs(t + oa(t)))bw(t),

a(O) = O,

(5)

(6)
where the instant t = 0 is chosen to be the beginning of the
perturbation and B(x,(t + a(t)))b, (t) represents the noise
sources. The perturbation projection vector (PPV) [9], v1(t),
is a To-periodic real vector, which represents the effects of
the noise sources on the phase deviation. The PPV determines
the component of the noise sources which aligns with the
persistent eigen-mode [10]. Only this component is known to
contribute to the phase noise of the oscillator [1], [6]. We
implemented the algorithm in [9] to evaluate v1(t) mainly
because it is consistent to the procedure used to calculate the
periodic steady-state solution in this work.

If z is the output variable and f is the observation frequency,
the power spectrum of z(t+a(t)) can be determined as follows
[1]:
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Fig. 1. Schematic of a cross-coupled CMOS LC VCO.
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where fo is the oscillation frequency, and Zi is the i-th
Fourier coefficient of z,(t). When we consider the diffusion
noise sources in the devices and thermal noise sources for the
resistors, the scalar c in (7) can be calculated by

M I To

~~c =I:To dt
m=l°O

( S J dr Vv7 (r,t) 2K np(r,tj)O3=n,p -

Lr I To
+ T: dt(vl (t)) 2Kd1,(

where K,j~, (r,t) is the magnitude of the diffusion noise
source in the m-th device and Kl, is the magnitude of the
thermal noise source in the l-th resistor.

IV. NUMERICAL EXAMPLE AND DISCUSSION

A cross-coupled CMOS LC VCO shown in Fig. 1 has been
simulated. The oscillator is designed to have a tuning range
from 500 MHz to 900 MHz. All of the dimensions for the
MOSFFETs and the values for the circuit components are
shown in the figure. The output signal is taken as a differential
voltage between the drain terminals (Vout0 and Vj+t) of MI
and M2. Two NMOSFETs (MI and M2), one PMOSFET
(M3), and two MOS varactors (VCI and VC2) are treated

Fig. 2. Output voltage waveforms of the simulated periodic steady-state
solution when VC0nt is 1.0 V and Vbias is 0.8 V.

by the two-dimensional semiconductor devices. Two inductors
(LI and L2) are characterized by inductance, series resistance,
and parallel capacitance. The inductors have the same quality
factor about 3 at 780 MHz. Ntot is set to be 53,020.

Fig. 2 shows the output voltage waveforms of the simulated
periodic steady-state solution when VcO,t is 1.0 V and Vbias
is 0.8 V. In this bias condition, the oscillation frequency of
the LC VCO, fo, is found to be 780 MHz. To obtain the
periodic steady-state solution, 64 nonuniform sampling time
points are generated during a period in transient simulation.
We will concentrate on four time instants A, B, C, and D in
Fig. 2 in the following discussion. At A and D, either MI
or M2 is turned on, and the other is turned off. At C, two
NMOSFETs are balanced because VQ+t and V-Wt have same
value. B is the mid-point between A and C. Electron densities
at the oxide-silicon interface of MI are plotted at the four
time instants in Fig. 3. Note that KMA is proportional to the
electron density.
We have performed the PPV calculation using the infor-

mation for the periodic steady-state solution. Fig. 4 shows
the PPVs for the electron continuity equation, in unit of
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Fig. 3. Electron densities at the oxide-silicon interface of MI.
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Fig. 4. PPVs for the electron continuity equation, in unit of A-1, in the
silicon substrate of MI at the four time instants, (a) A, (b) B, (c) C, and
(d) D. Nine contours with uniform steps between the maximum value and
minimum value are generated for each time. The dashed lines denote the
metallugical junctions. The gate contact is located from -0.25 ,um to 0.25 ,um
in the lateral position. The zero point in the vertical position is the oxide-
silicon interface.

A-1, in the silicon substrate of MI at the four time instants.
When MI is biased under the subthreshold condition (A), the
PPV along the MOSFET channel has a very sharp gradient
only at near-source region. As the gate voltage of MI, V1+t,
increases (B), the PPV has an almost uniform distribution
along the MOSFET channel. When even higher gate voltage
is applied (C and D), the gradient of the PPV appears also
in the source/drain extension. On the other hand, the PPVs
for electron continuity equation, in unit of A-1, in the silicon
substrate of VCI at the four time instants, which are shown
in Fig. 5, have different shapes. The PPV in VCI has its
maximum (or minimum) value near the mid-point of the gate,
and small values at the source, drain, and substrate region.
By symmetry, the gradient of the PPV has zero value at the
mid-point of the gate, and the peak position of Vvvc7 moves
slightly as the gate voltage changes.

Fig. 5. PPVs for the electron continuity equation, in unit of A-', in the
silicon substrate of VC1 at the four time instants, (a) A, (b) B, (c) C,
and (d) D. By symmetry, only half of the varactor is shown in this figure.
Nine contours with uniform steps between the maximum value and minimum
value are generated for each time. The dashed lines denote the metallugical
junctions. The gate contact is located from -1 ,um to 1 ,um in the lateral
position. The zero point in the vertical position is the oxide-silicon interface.

Fig. 6 shows the spatial distribution of c originated from the
electron diffusion noise sources in MI. The spatial distribution
of c has its peak value at near-source region in the channel
mainly because the magnitude of the noise source, Km'1, at
near-source region is larger than that at near-drain region, as
shown in Fig. 3. Also the spatial distribution of c originated
from the electron diffusion noise sources in VC1 is shown
in Fig. 7. Since the gradient of the PPV vanishes at the mid-
point of the gate, the spatial contribution also vanishes at that
point. Fig. 8 shows the contributions of the devices and the
inductor losses to c as a function of time. The contribution
of MI to c at D is relatively small because the PPV for the
electron continuity equation shows the gradual change at that
instant. In this example, we can find that the contributions of
the NMOSFETs (MI and M2) to c are dominant. Averaging
these contributions over a period, the value of c is found to
be 0.51 fsec.

In Fig. 9, the calculated power spectral density of the output
differential voltage is shown for first four harmonics of fo.
As shown in the inset of the figure, the simulation predicts
a Lorentzian shape of the phase noise spectrum. Thus it can
be observed that the 1/f2 spectrum originates from the white
noise source. At 500 kHz offset frequency, the phase noise of
-92.0 dBc/Hz is obtained.

V. CONCLUSION

The physics-based phase noise analysis and simulation of
the oscillators was reported and the phase noise spectrum of
a CMOS LC VCO was calculated. We described the shape of
the PPVs and the spatial contribution to c inside a MOSFET
and a MOS varactor at a few time instants. The output power
spectral density originated from the diffusion noise sources in
the semiconductor devices and the thermal noise sources in
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Fig. 6. Spatial distribution of c originated from the electron diffusion noise
sources in MI. It has its peak value at the near-source region in the channel.
The zero point in the lateral position is the mid-point of the gate.
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Fig. 9. Power spectral density of the output differential voltage for first four
harmonics of fu. Inset is a blown up version of the power spectral density
around the first harmonic. At 500 kHz offset frequency, the phase noise of
-92.0 dBc/Hz is obtained.

the resistors shows a Lorentzian shape and can explain 1/f 2
phase noise spectrum. We expect that this framework can be
a useful tool for an accurate noise analysis in the oscillators.
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Fig. 7. Spatial distribution of c originated from the electron diffusion noise
sources in VC1. By symmetry, only half of the varactor is shown in this
figure. The zero point in the lateral position is the mid-point of the gate.
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Fig. 8. Contributions of the devices and the inductor losses to c as a function
of time. The contributions of M2 and VC2 can be obtained by shifting the
contributions of MI and VC1, respectively, by amount of half To.
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