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Abstract—The electronic and vibrational properties of carbon
nanoribbons (CNRs) are analyzed and compared to carbon
nanotubes (CNTs). Transport properties are analyzed from the
perspective of use in an FET device. The required sizing and
consequent processing requirements are discussed. The overall
properties of the CNRs and CNTs are found to be similar, with
the primary difference being the more restrictive size vs.
bandgap behavior of the CNRs.
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1. INTRODUCTION

Carbon nanoribbons, essentially a monolayer of graphite
patterned into a narrow strip, have recently been proposed [1]
as an attractive alternative to CNTs While the CNTs have
many highly desirable electronic properties (such as
exceedingly high mobility and potentially excellent short
channel effects in FETs due to the small “depth” / length aspect
ratio), no method of assembling large-scale circuits comprised
of CNTs has yet been devised. The main difficulty is the fact
that CNTs are created prior to integration and need to be placed
in correct positions in the circuit. This is contrary to the
conventional planar process in Si, in which devices are formed
on the entire wafer at once by lithographic means. CNRs offer
the promise of lithographic patternability, while providing
electronic properties similar to those of CNTs. Furthermore, the
electronic properties of the CNRs are lithographically tunable,
selecting metallic vs. semiconducting CNRs, by the orientation
of the edge termination (for a semiconducting armchair CNR,
see Figure 1). Thus, the channel, source and drain regions are
formed by a single patterning step, requiring only the addition
of the gate stack and contacts to complete the transistor. A
schematic of such a transistor is shown in Figure 2. The
required sizes and orientations result from the basic CNR
properties, as discussed in the following sections.

IL.

The bandstructure of CNRs is computed using the
conventional nearest-neighbor Tight-Binding method, with a
p.-orbital-derived Bloch wavefunction basis, similar to the
method frequently used for CNTs[2,3]. The overlap element is
retained, resulting in the generalized eigen problem. The p,
basis is sufficient even for narrow ribbons, since the small-
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Figure 1 Section of CNR is shown, with points representing atoms of carbon.
Only one unit cell is actually simulated, with periodic boundary conditions
applied in the transport direction (CNT also has periodic boundary conditions
applied along the edge).
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Figure 2 Top-down schematic of CNR transistor, with CNRs forming both
channel and SD regions.

curvature approximation usually made for CNTs is strictly
valid for CNRs. The absence of curvature implies that the p,
portion of the TB Hamiltonian is decoupled from the sp” in-
plane part, and can be treated separately. Since the bottom of
the conduction band and the top of the valence bands are
formed using precisely the p, set of states, which are in turn
decoupled from the rest of the Hamiltonian, only the p, portion
is used for computations. The key ingredient for CNR
computation is the treatment of the boundary conditions.
Whereas the CNT has periodic boundary conditions in both the
transport and “width” directions, the CNR has periodic
boundary conditions only in the transport direction. No special
boundary condition is asserted on the wavefunctions in the
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transverse directions; the edge atoms are simply assumed to
have fewer coupling neighbors. In order to {facilitate
computations with this boundary condition, the zone-folding
approach is not used, resulting in a larger (but still very
manageable) eigenvalue problem. Note that this approximation
ignores the interaction of the carbon atoms with the Si-C
substrate (used to form the graphene layer), which is assumed
here to be weak.

Computed CNR bandstructures are shown and compared to
those of CNTs in Figure 3. There are obvious qualitative
similarities: both metallic and semiconducting bandstructures
are manifested, the semiconductor bandgap depends on the size
of the structure, and the conduction and valence bands are not
symmetric (due to the inclusion of the overlap parameter).
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Figure 3 CNR (top) and CNT (bottom) electron bandstructures are shown, for
the (10,0) chirality.
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There are also notable differences, however. Firstly, the two-
fold degeneracy of the CNT states is removed — the lowest
subband of the conduction and wvalence bands are non-
degenerate in the CNR. Secondly, the lowest subband of the
CNR has appreciably higher curvature than the corresponding
CNT subband (for the semiconducting cases).

The most striking difference between the CNT / CNR
bandstructures, however, is the much smaller bandgap of the
CNRs. This is illustrated in Figure 4, where the bandgap of
CNRs and CNTs is shown as a function of size. The much
smaller CNT bandgap can easily be understood qualitatively, as
shown schematically in Figure 5. The electronic wavefunctions
of CNTs must obey periodic boundary conditions (PBCs),
matching both value and slope at the tube “edge”. Thus, the
lowest energy state must have the qualitative shape of the
sinusoidal (red) wavefunction. The CNR has no such
restriction, and consequently permits a wavefunction
qualitatively similar to the semi-circular (black) curve. The
latter will obviously have lower energy (the reduced curvature
results in lower expectation value for kinetic energy). Thus, the
CNR permits states lower in energy than the CNT. This is a
basic property of periodic vs. non-periodic structures, and is
not subject to modeling details.
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Figure 4 The dependence of bandgap on size for CNRs and CNTs is shown.
Copyright 2006, American Institute of Physics [8].
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Figure 5 A schematic of ground state wavefunctions in CNRs (terminating)
and CNTs (periodic) is shown.

The small bandgap of the CNR has important technological
consequences, since it limits the band-to-band source-to-drain
tunneling and ambipolar conduction (sufficiently short devices
will be SD tunneling limited). As shown on Figure 4, achieving
Si-like bandgaps requires 1 nm or smaller CNRs, with 0.5 eV
bandgaps achievable at ~2 nm. Such minuscule sizes bring
into question the feasibility of large-scale integration, possibly
defeating the promise of lithographic patternability.

III.  VIBRATIONAL PROPERTIES

Transport in a perfect CNR (or CNT, for that matter) will
be determined by phonon scattering, since vibrational
distortions of the lattice cannot be removed at finite
temperature. The continuum approach of computing phonon
dispersion relations becomes invalid for narrow structures; the
length scale for lateral variations in the displacement field must
be many atomic distances in size, a condition that is clearly
violated for a structure that is only a few atoms across. Thus, an
atomistic approach is needed.

We employ the semi-classical force-constant method, This
is essentially an application of Newton’s second law, with a
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tensorial force-constant coupling each atom pair [3]. The total
force on any given atom is obtained by summing the
contributions of all neighbors within a given radius (fourth-
nearest neighbors are included). A propagating wave form of
the solution is then assumed in the transport direction (1-
dimensional transport and k-vector for the CNR and CNT),
which leads to a generalized ecigenvalue problem for the
frequency, at any given wave vector. The problem is then
solved for a set of wavevectors in the Brillouin zone, resulting
in the complete dispersion relation (phonon bandstructure).
Furthermore, the eigenvectors (multiplied by the wavevector-
dependent phase factor) represent the atomic displacements of
the various modes. The treatment of the CNT and CNR is
virtually identical; all atoms experience a force coupling to all
neighbors within a 4™-nearest neighbor radius. For the CNT,
this means that periodic boundary conditions are applied. For
the CNR, the edge atoms simply have fewer coupled neighbors
No displacement boundary conditions are applied; these arise
naturally from the solution of the ecigen problem. The force
constants are assumed not to change near the edge of the
ribbon. This is an approximation, of course, but a reasonable
one for a first order calculation (more detailed calculations
would need to comprehend the influence of the substrate, as
well as any other surrounding topography).

The resulting bandstructures for the CNR and CNT are
shown in Figure 6. While they appear quite different at first
glance, there are notable similarities in the low-frequency
acoustic modes. Specifically, the two in-plane modes (modes
with linear dispersion relation near the origin of the plot) and
the lowest frequency transverse mode (parabolic near the
origin) are quite similar. Higher order modes have reduced
frequency and lifted degeneracy in the CNR. The similarities
and differences of the two dispersion relations are best
understood by examining the atomic displacements.

Since the force-constant tensor does not couple in-plane
displacements with out-of-plane forces (and vice versa), the in-
plane and out-of-plane motions are decoupled. Thus, modes are
either entirely in-plane, or entirely out-of plane. For the CNR,
this arises naturally, for the CNT, it is due to the neglect of
curvature. The second two modes of the CNR and CNT are
shown in Figures 7. The in-plane displacements are indicated
by arrows, whereas out-of-plane displacements are indicated by
discs. In the CNR, the absence of PBCs in the lateral direction
permits an additional degree of freedom for the atomic
displacements of the edge atoms, which can move in opposite
directions (not possible in CNTs). This results in additional
phonon modes for the CNR.

IV. TRANSPORT PROPERTIES

The key property that makes the CNT attractive for an FET
devices is its high mobility. While the CNR is qualitatively
similar to the CNT, it is not necessarily clear that it will have
similarly high mobility. We compute the low-field phonon-
limited mobility for both the CNR and CNT using the Born
Scattering approach, similar to that outlined in [5] and [6]. The
overlap matrix elements are computed using direct integration
of the previously computed electron and phonon
wavefunctions. The selection rules are limited to forward
momentum and conservation only (angular momentum would
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apply for the CNT as well, but not the CNR). The overall
mobility value is obtained using the Kubo-Greenwood formula.
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Figure 6. The phonon dispersion relations for a (7,0) CNT (left) and (7,0) CNR
right are shown, in the first Brilloiun zone. The lowest energy modes are
similar, degeneracy lifting and energy reduction is evident for the higher
modes.
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Figure 7. The 3™ and 4™ phonon modes of the (7,0) CNR. Note that the 4™
(out-of-plane) mode clearly has non-periodic boundary conditions, not possible

inthe CNT. Copyright 2006, American Institute of Physic [8].

The results of the mobility computation as a function of CNR
/ CNT size are summarized in Figure 8. As previously reported
(both theoretically and experimentally), the CNT mobility
degrades with decreasing CNT diameter. The CNR mobility
behaves similarly, and the effect is understood as a
consequence of increasing wavefunction confinement with
decreasing structure size. Also apparent is the fact that the
CNR mobility is in fact higher than the CNT mobility, at equal
size (the perimeter of the CNT equals the width of the CNR).
This can be primarily attributed to the significantly smaller
transport effective mass of the CNR. As previously discussed,
the CNR has a lower energy / higher velocity ground state than
the CNT. The phonon modes primarily responsible for low-
field mobility are quite similar between the two, and are
therefore not a significant differentiator of the CNT / CNR.
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Figure 8. Comparison of CNT and CNR mobilities. All structures are
semiconducting except where indicated otherwise.

The mobility shown in Figure 8 corresponds to the low-
vertical field mobility. In general, we expect the phonon-
limited mobility to be strongly modulated by the vertical field,
as evidenced by the inversion layer of the planar MOSFET, Si
nanowire, or FINFET device. The CNT and CNR, however,
exhibit a very weak field dependence of mobility, with a nearly
constant mobility from 0 field to the MV/cm field range. The
mobility does not change significantly until the vertical field
approaches the 10 MV/cm range. Given that the primary reason
for the ficld-induced variation of inversion layer is the
modulation of the spatial confinement of the carriers, it is not
surprising that the CNTs and CNRs show very little field
dependence; their out-of-plane confinement is essentially
unchanged with the applied field. This intuitive assertion is
supported by field-dependent bandstructure calculations [7].

Whereas the vertical electric field has little influence on the
bandstructure and mobility of CNRs and CNTs, the lateral
field modulates it quite strongly. This is quantified using the
MC method, and the results are shown in Figure 9. The
behavior of the CNT mobility has already been reported in [6],
where scattering from the conduction band ground state to the
first excited state resulted in mobility degradation, at a faster
rate than what scattering-limited velocity saturation would
predict. The CNR behavior is very similar, with the electron
transfer to higher subbands occurring at lower energies, and
the mobility consequently degrading at lower fields.

While the equal-size mobility of the CNR is higher than
that of the CNT, it is perhaps more meaningful to compare the
mobilities at equal bandgaps. The size of the bandgap
determines the available range of voltages for a device
operating in the ambipolar mode, as well as the ultimate limit
for device scaling due to S/D tunneling. This comparison is
illustrated in Figure 10 . This implies that the CNR is operating
with stronger lateral confinement, which overwhelms the
superior group velocity of the smaller CNR. As the bandgap
approaches 0 (graphene), the mobilities of the CNR and CNT
become similar, but at more technologically relevant bandgaps
of > 0.5 ¢V, the CNR mobility is hardly superior to that of Si.
The nearly ballistic regime often cited for CNTs is available to
CNRs only for bandgaps < 0.25 eV.
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Figure 9. Comparison of CNT and CNR mobilities vs. lateral field (from
Monte Carlo, similar to the approach of [6]). At matched size, CNR low-field
mobility is higher, but the high-field degradation starts at lower field values.
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Figure 10. Comparison of CNR and CNT mobilities at matched bandgap. Due
to the reduced CNR bandgap, CNTs have considerably higher mobilities at
matched bandgap. Copyright 2006, American Institute of Physics [8].
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