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Abstract— A three-dimensional unstructured mesh
adaptation technique coupled to a posteriori error esti-
mation techniques is presented. In contrast to other work
[1, 2] the adaptation in three dimensions is demonstrated
using advanced unstructured meshing techniques to realize
automatic adaptation. The applicability and usability of
this complete automation are presented with a real-world
example.

I. INTRODUCTION

Several different methods are employed in TCAD to calcu-
late the solutions of partial differential equations. The differ-
ential equations that need to be solved result from modeling
a number of disparate physical phenomena such as dopant
diffusion, mechanical deformation, heat transfer, fluid flow,
electromagnetic wave propagation, and quantum effects. Every
one of these methods, like finite differences, finite elements
and, finite volumes, has its merits and shortcomings and so
are more or less suited for different classes of equations. All
of these methods have in common that they require a proper
tessellation of the simulation domain. How suitable a given
tessellation is, not only depends on the method employed to
compute an approximate solution, but also only on the type
of equation.

This transition from the continuous domain to a discretized
domain will inherently produce errors in the computed results,
no matter how sophisticated or how appropriate a mathe-
matical model is. This approximation error can be enor-
mous, and can completely invalidate numerical predictions
if no estimated or quantitative measure of these errors is
available. The general subject is referred to as a posteriori
error estimation. When equipped with such a measure for the
error resulting from the choice of a tessellation, the question
arises how to change the tessellation in order to improve
the accuracy of the calculated result. In order to meet most
useful this has to be accomplished without user interaction, as
the user usually does not have the necessary experience. The
procedure of generating tessellations is commonly known as
mesh generation, but in this work the focus is placed on mesh
adaptation.

Attempts of error estimation and adaptive mesh generation
have already been undertaken exhibiting a highly increased
rate of convergence in two dimensions when using a mesh
adaptation scheme [3]. The results for the three-dimensional
case have not displayed this desirable trend. This is attributable
in great part to the problems involved in mesh generation
for the three-dimensional case. A novel, fuzzy classification

scheme to characterize the quality of the adapted mesh has
shown extremely promising results [4].

II. MESH GENERATION AND ADAPTATION

The discretization of the underlying computational do-
main is the first step in a numerical solution procedure. A
widespread approach to spatial discretization is to divide the
simulation domain into a structured assembly of quadrilateral
cells, with the topological information being apparent from
the fact that each interior vertex has exactly the same number
of neighboring cells. This kind of discretization is called
structured grid or simply grid. The major disadvantage of
this approach is, that the discretization of highly non-planar
geometries produces a large number of points in the simulation
domain. As a result the following calculations are slowed down
and require a lot of computational resources due to the great
amount of excess points.

The alternative approach is to divide the computational
domain into an unstructured assembly of more or less arbitrary
formed cells. The shape of the cells is constrained by the
needs of the following computations. The notable feature of
an unstructured mesh is that the number of cells surrounding
a typical interior vertex of the mesh is not constant. This kind
of discretization is called unstructured mesh or simply mesh.
The major disadvantage of this approach is that the element
generation process is one of the most complicated procedures
in the field of simulation. However the reduction of simulation
time and the requirements on computational resources can be
significant.

Based on the complex three-dimensional mesh generation
process and the impracticality of using uniform refinement
strategies most TCAD tools are based on grids. But with
the shift to real-world input structures of almost arbitrary
complexity the grid approach with the involved refinement
steps is no longer viable and unstructured mesh generation
techniques become increasingly attractive despite incurring
several complications.

In two dimensions the user can supervise the generation of
a mesh and even adjust its adaptation relatively easily. The
move from two to three dimensions virtually eliminates this
possibility, as both visualization and user interaction are by
far more difficult. As a result the user has little knowledge
where to best adapt the mesh. Because of this it is essential
for three-dimensional mesh generation and adaptation to work
in conjunction with some kind of error estimator to make
automatic generation and adaptation without user intervention
possible.
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The relationship between numerical accuracy, the condition
of the stiffness matrix, and the quality of the elements of the
underlying mesh is still not completely understood, even for
the simplest of cases. According to experience and mathemat-
ical results, isotropic elements usually lead to good overall
results while degenerated elements will negatively affect the
computation. An abstract quality criterion for elements which
have to be refined had to be developed so that automatic
remeshing can be accomplished easily by locally removing
patches of tetrahedra and inserting points derived from the
error estimator.

The calculation of the abstract quality criterion that controls
the adaptation of the mesh is cleanly separated from the
actual meshing procedure. This enables an easy exchange of
the mathematical error estimator and also eases independent
software development of the individual components.

In the field of unstructured mesh modification the follow-
ing techniques are used: the h-method: this method uses a
geometrical parameter h for refinement (i.e. the height of a
tetrahedron), the p-method: this method varies the degree p in
the approximation (i.e. quadratic ansatz functions within finite
elements) while keeping the geometrical size h unchanged,
the hp-method: this method combines the p-method with the h-
method or an adaptive remeshing method: this method extracts
a patch of marked elements which are accordingly remeshed.
The adaptive remeshing method employing an advancing front
meshing method [5] is the focus of the presented work because
of its high degree of freedom.

III. ERROR ESTIMATION

Discretization of the equations describing the problem is
needed to make numerical treatment possible. The discretized
problem then results in a discrete distribution of quantities
and ansatz functions. The accuracy of the simulation does not
solely depend on the quality of the underlying mesh but also
on the suitability of the ansatz functions that have been chosen.
The use of piecewise affine or constant ansatz functions,
as in the cases of finite elements or finite volumes, results
in a certain characteristic of the error. In terms of function
spaces a projection of the complete space of functions to the
subspace of the chosen ansatz functions is performed. The
euclidean norm can then be used to measure the distance of
two functions.

‖f − g‖2 =

√

∫ +∞

−∞

(

f(x) − g(x)
)2

dx (1)

A. Residual based error estimation

For a residual based error estimator (RS) a globally continu-
ous function is constructed by piecewise affinely interpolating
the computed numerical solution (Figure 1) for each triangle.
The Laplace equation is satisfied exactly for the interior of
the triangles but is discontinuous at the boundaries. This
discontinuity of the interpolated function leads to an error that

uh

uh

Figure 1: Left: Two-dimensional representation of the error
estimator. The normal component of the error changes at the
facet. Right: Discrete solution function uh and the interpola-
tion function uh as function over the mesh triangle.

can be estimated locally by the following expression [6]:

ηK = hK

(

∑

E∈EK∩Eint

‖JE,n (uh) ‖2
E +

∑

E∈EK

‖JE,t (uh) ‖2
E

)

(2)

here EK denotes the edges of the triangle and Eint is the set
of the interior edges. The two components of the sum are the
normal component JE,n and the tangential component JE,t of
the gradient ~JE of the local discontinuity of the interpolated
function. The geometry factor hK marks a characteristic
length of the triangle such as the mean edge length or the
circumference radius.

Due to the use of piecewise affine interpolation the resulting
function is continuous and hence the tangential component of
the jump vanishes and only the normal component has to be
considered.

The behavior of this error estimator can be explained quite
easily. A gradient of the potential leads to a flux that is
assumed to be free of sources in the case of the Laplace
equation. A discontinuity of the flux as it passes through a
facet of a tetrahedron indicates a source of flux within the tetra-
hedron. This, however, is a contradiction to the assumption of
vanishing source density associated with the Laplace equation.
In case the potential behaves smoothly when crossing a facet
the error thereby estimated approaches zero.

B. ZZ Error Estimator

The ZZ error estimator [7] assumes the smoothness of
the correct solution. A smoothed solution uh (Figure 1) is
calculated form the numerical solution uh and then compared
to the numerical solution. The difference of uh and uh is
interpreted as a measure for the error in the solution uh. The
ZZ error estimator has been shown to have both an upper
and a lower bound for certain types of differential equations
such as the Laplace equation [7]. Polynomial functions of
degree one in each tetrahedron have been chosen to obtain
the smoothed solution. The distance between the interpolated
piecewise affine function and the piecewise constant function
can be determined by the evaluation of the norm presented in
(1) and yields:

ηK =
∑

i

U2
i −

∑

i 6=j

UiUj (3)

236



where the Ui are the resulting potential values at the vertices
of the tetrahedron.

IV. RESULTS

In the following the results of the error estimation and mesh
adaptation techniques are shown. We demonstrate the behavior
of our mesh adaptation and error estimation coupling strategy
with a realistic interconnect line with tapered line elements
(lines with angular side walls) and pyramidal elements as the
vias, which connect the two lines. The considered structure
is presented in Figure 2. Afterwards we compare the residual
and the ZZ error estimation techniques. The evolution of the
quality of the tetrahedra during the mesh adaptation process
is also presented.

Figure 2: Initial interconnect structure with potential gradient

The next diagram presents the results from the residual
error estimation technique. The residual of each element
is calculated taking into account its neighboring elements,
therefore the error estimates give an excellent indication where
to adapt the mesh and the errors are quickly reduced. This
comes at the expense of computation time, which is twice
that of the ZZ error estimator.

With respect to mesh quality and the subsequent simulation
steps, it is very important to bound the degree of degeneration
to an upper limit. Therefore we use a fuzzy tetrahedra clas-
sification scheme [4] and separate the tetrahedra into seven
categories. It is imperative for the following calculations that
the sliver type is eliminated wherever possible.

1 2 3 4 5 6 7

Initial error.
One adaptation.
Final adaptation.

66 %

The distribution of mesh elements indicating the mesh qual-
ity based on the fuzzy classification scheme is presented next.
It can be seen that the error decreases due to the adaptation

process, while keeping excellent overall mesh quality.
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The visualization of the estimated error using the residual
thechnique during three adaptation steps is shown in Figures
3, 4 and 5. Again the reduction of error is observed clearly.

Figure 3: RS error estimation adaptive mesh refinement steps,
initial error

Figure 4: RS error estimation adaptive mesh refinement steps,
first adaptation step

The next diagram presents the distribution of the ZZ esti-
mated error classes within the first, second and last adaptation
step. The ZZ error estimation technique is by its design very
localized and therefore cannot include any information based
on the neighboring tetrahedra. Because of this technique does
not shift all elements to the lower error classes as quickly as
the residual error estimation technique does.

1 2 3 4 5 6 7

Initial error.
One adaptation.
Second adaptation.

100 %
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Figure 5: RS error estimation adaptive mesh refinement steps,
last adaptation step
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Finally, to give an impression of the estimated ZZ error
we present a three-dimensional tetrahedra visualization of the
error values in the next figures (Figures 6, 7, 8). All colors are
mapped to the same range by a so-called transfer function.

Figure 6: ZZ error estimation adaptive mesh refinement steps,
initial error

V. CONCLUSION

The feasibility of coupling an a posteriori error estimator
to adaptive meshing has been presented. Utilizing recent
advances in mesh generation it has become possible to dramat-
ically increase the quality of the simulation result while at the
same time keeping the simulation time and required resources
to a minimum. This is achieved by only refining areas corre-
sponding to high error values using adaptive meshing leading
to an automatic adjustment of mesh density in sensitive areas.

Figure 7: ZZ error estimation adaptive mesh refinement steps,
after first adaptation step

Figure 8: ZZ error estimation adaptive mesh refinement steps,
last adaptation step

The ZZ error estimator is cheaper to compute compared to
the residual error estimator, but also shows a lower rate of
convergence.
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