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Abstract — A stochastic method for simula-
tion of quantum transport in nanoscale electronic
devices is proposed. The interaction with the
Wigner potential is interpreted as a scattering
mechanism, which is a counterpart to the scat-
tering mechanisms due to the lattice imperfec-
tions. The derived quantum Monte Carlo algo-
rithm retains the basic features of the Single Par-
ticle Monte Carlo method used for simulation of
classical devices. The method is applied for sim-
ulation of tunneling process through energy bar-
riers.

I. INTRODUCTION

Description of quantum phenomena, in terms of parti-
cle trajectories is a promising approach for understanding
and modeling the transport in nanoscale electronic de-
vices. Considered is the Wigner equation which accounts
for the coherent part of the transport via the Wigner
potential V, and for dissipation processes via the Boltz-
mann collision operator B. For one-dimensional devices
the equation reads:
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The Wigner potential is defined by the Fourier transform:

Vulz, k) = f c:!s'e""‘*"at—rE (Ve-3-vi+3)
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The Boltzmann collision operator is defined by the scat-
tering rate S:

(Bfw) (z,k,t) =
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S(k’,k) is the probability density per unit time for
scattering from state (z,k') to state (z,k). S is a cu-

mulative quantity which accounts for different scatter-
ing sources such as phonons and impurities. The total
out-scattering rate A is defined by the integral over all
after-scattering states:

AK) = / Sk, k')dk’ 3)

Deterministic methods consider the momentum space
also as one-dimensional and can solve the coherent
Wigner equation or include dissipation in a relaxation
time approximation [1].

The particle approach is motivated by the Monte
Carlo (MC) method for device simulation, where the dis-
sipation operator is treated exactly, but the coherent part
is presented by its classical limit. This limit leads to a
classical force term transforming (1) into the Boltzmann
equation. How to account for the complete potential term
is the main concern of the particle approach.

In (2] the potential term has been interpreted as a
quantum force giving rise to dynamic particle trajecto-
ries. They nicely explain the tunneling process but yet
cannot solve (1): the quantum force itself depends on the
solution f,,.

In {3] a particle approach to the coherent Wigner
equation has been proposed. The Wigner potential has
been treated exactly by the iteration series of the equa-
tion. The convergence of the obtained backward Monte
Carlo method has been theoretically investigated.

Recently the coherent equation (1) has been solved
numerically by using particles [4] which cross the device
by collisionless drift over classical trajectories. The in-
formation about Vi, is retained as particle affinity.

We propose a forward stochastic method which treats
the entire right hand side of the stationary equation (1)
as a scattering ferm. All three dimensions of the momen-
tum space are considered. The method retains the basic
features of the weighted Single Particle MC method [5].
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II. THE QUANTUM MC METHOD

The forward method is designed to evaluate the mean
value

(4) = f A(z, X) fu(z, k)drdk
9]

of a generic physical quantity A such as carrier density,
velocity, energy, current. {2is a given domain of the phase
space.

A mean value (A) can be calculated either by solv-
ing (1) or alternatively by using the conjugate equation.
To obtain the latter, a separation of the antisymmetric
function V,, into two complementary positive functions

Vw(wi k:) = VJ(:B,kg;) — Vuj_("ci k:ﬁ)

is used. A unique function

(@) = [ ViE (2, ky)dk,

can be introduced. 7y is interpreted as the out-scattering
rate of the Wigner potential in strict analogy with the
phonon cut-scattering rate A, given by equation (3). The
potential out-scattering rate <y is added to the both sides
of (1) and the steps used to derive the the equation con-
jugate to the Boitzmann equation (6] are applied. The
Neumann expansion of the conjugate equation allows to
express {A) as an infinite series.

The probabilities of the quantum MC {QMC) algo-

rithm are derived from the consecutively repeated term
of the series:

/dtfdk’ {(V(I(t),k(t))e_{("(:(t)k(y)))dy}
0

L(z(t), k(1) k')
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where v(z,k) = y(k) + Alz).

The term in the curly brackets determines the distri-
bution of the free-flight time ¢. A particle with coordi-
nates z,k at time 0 drifts over Newton’s trajectory:

ki) =k (4)

At time ¢ the particle reaches the point #(t), k(t) where
the next scattering occurs. The selection of the free-
Hight time follows the classical MC scheme but with an
out-scattering rate v. The term becomes the classical dis-
tribution for the free-flight duration when ~ approaches
zero.

z(1) =z + v (k)7

The after-scattering state k' is selected from the func-
tion
Mz, k, k') = S(k, k') + v(z)d(k' — k)
+ (Vo (2, kL = ko) ~ V7 (3, K, — k) 6(K,, — Ky)

To become a probability density I' must be properly nor-
malized. Normalization factors are introduced for the
components of I'. The conditional probability deasity for
a transition from the free-flight end state (z, k) to the af-
ter scattering state (z,k’) is presented in the following
table, where u(z,k) = 3y(k) + A(z).

transition density scattering source

yz) Vi(e k' = k)oK, —ky:)
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Particles enter the device from the contacts with unit
weight. The weight is multiplied at each scattering event
by the inverse of the corresponding normalization factor
give in the following table:

weight factor scattering source

#(z, k) potential V', self-scattering -y
(z}
and phonons S
_pzk) potential V'~
()

The basic feature of the presented approach is that the
quantum potential is treated in the same way as the
phonon scattering. Accordingly the derived algorithm
retains the basic features of the weighted Single Particle
Monte Carlo method. The rules for injection from the
boundary distribution, the build up of the trajectory by
consecutive drift and scattering events, the accumulation
of the weight over the trajectory and the recording of the
physical averages remain unchanged.

Two limiting cases can be considered. When the
quantum nature of the transport is negligible, the quanti-
ties V,}, ¥, and 7 become zero. Accordingly the weight
becomes unity. In this case the QMC method turns into
the classical MC method.

When coherent transport is considered, the Boltz-
mann scattering operator is switched off by setting S to
zero. Then the weight factors become simple numbers:

188



weight factor scattering source

3 potential VT, self-scattering

-3 potential V'~

In Section IV. the method is examined for a coherent
transport problem. A numerical property is observed,
which is related to the accumulated weight. With each
scattering event the absolute value of the weight increases
by factor of 3. As large is the simulated domain and/or as
frequent are the scattering events, as much weight is ac-
cumulated per trajectory. This leads fo a rapid increase
of the variance of the method. Intensive computations
and application of the trajectory split technique charac-
terize the numerical aspects of the method.

The application of the method includes a discretiza-
tion of the £ and k; coordinates. The discretization fol-
lows the requirements for completeness of the determinis-
tic approach for solving the Wigner equation [7]. In par-
ticular the values of Az and N, where N is the number
of points of the discrete Fourier transform, are free pa-
rameters. The product N Az gives the coherence length
used to calculate V,,,. The momentum inierval gbeys the
relation Ak, = #/N.

III. INCLUSION OF THE ELECTRIC FIELD

The explicit appearance of the electric filed in the
transport equation can be convenient for several reasons.

eE@) 8 oot

hand side of (1) becomes equivalent to the free streammg
operator of the Boltzmann equation. The field gives rise
to a accelerating force in (4) which drives the particles
throughout the device as in the classical MC method.
Furthermore particles stay less time in the quantum re-
gion which reduces the number of the scattering events
per trajectory and thus the accumulated weight.

Augmented by the classical force term &

In the present formulation the potential V' is a sum of
the barrier potential Vj and the electrostatic potential V,
V = Vi +Ve. A separation of these potentials can be first
addressed. Particularly the idea is to use V, in equation
(2) to obtain the Wigner potential, while the derivative of
V. to give the electric field E. Such separation appears to
be an approximation if the electric field is not a constant
in the domain of the Fourier transform. It can be shown
that equation (2) gives rise to a field term only in the case
where V is up to a quadratic function of the position [8].

A rigorous reformulation of (1) is as follows:

2, M
ot

hk, 0 eE{z) 6
m 0z h

+ [ dky' Vi (2 ke’ — ko) ol KL Ky ) (5)

) Fulz ko) = (Bf.) @k )

Vw((ﬂ, kz) =
z_;Fﬁ_[ (V(:c - %) ~Viz+ %) - CE(J:)s) e—ika® go

It can be shown that the Fourier transform of the term
eB(x)s compensates exactly the inclusion of the force
term in the left hand side of (5)

IV. APPLICATION OF THE METHOD

We examine the method as applied to a tunneling
process. In the simulated experiment particles are in-
jected between the two 1nm thin, 50meV high barriers
of an unbiased resonant-tunneling device (RTD). The
injected particles are evenly distributed in the middle
2nm part inside the 4nm wide potential well and have
a Maxwell-Boltzmann distribution in energy, the tail of
which is truncated at 50 meV such that the injected
particles can overcome the barriers only by tunneling.
Material parameters for GaAs at 300K temperature are
assumed. Particles crossing the barriers can leave the
device through the left or right absorbing contacts.
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Figure 1: Device potential, current and particle density
as depending on the position in the device.

The experiment is especially designed for comparison
with a classical system. Under the assumed conditions
classical particles have a simple behavior which will be
used as a reference for evaluation of the QMC results.
Classical particles cannot overcome the barriers. The
particle density would grow with the time inside the well
and no stationary solution exists for this case. The cur-
rent density outside the well would be zero because no
particles leave the well region. It would be zero also in-
side the well, due to the fact that the injection region is
centered in the well and that the reflection from the bar-
rier walls does not destroy the equilibrium distribution.
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The QMC method provides the stationary solution
which consistently characterizes the quantum nature of
the transport process. The electron density plotted in
Figure 1 remains independent of the simulation time.
The density remains constant in the region of injection
(middle part of the quantum weli). It decreases out-
side the injection region well before the physical location
of the barriers, because of the nonlocal character of the
quantum potential. Indeed the potential out-scattering
rate v is remarkably high around the barriers on a dis-
tance determined by the coherence length L. = NAz. As
shown in Figure 2, v which is on the order of 10—14s~!
assumes even higher values outside the barriers than in-
side.

The current density in Figure 1 clearly demonstrates
the tunneling process. The density is nonzero in contrast
with the classical case. Particles tunneling through the
left barrier give rise to negative current, as opposite to
those leaving through the right barrier. Qutside the in-
jection region the current densities to the left and right
contacts are space-independent because of the current
continuity,
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Figure 2: Device potential, out-scattering rate v and ki-
netic energy distribution in the device.

A quantitative characterization of the tunneling pro-
cess is given by the mean kinetic energy, Figure 2. As
proportional to the square of the wave vector, the kinetic
energy becomes negative in the barriers. This is the place
where the wave vector of the tunneling particles trans-
forms from real to imaginary quantity. The particles are
injected in the well with mean energy corresponding to
the equilibrium value ~ 13meV for one direction. Each
individual scattering by the quantum potential changes
the energy of the particle. In this experiment particles
can gain energy well above 1eV. Despite that scattering
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occurs in the whole device, the equilibrium value is main-
tained in the regions with zero potential energy. Conser-
vation of the total energy is demonstrated.

V. CONCLUSION

A stochastic method for sirulation of quantum trans-
port in nanoscale electronic devices has been proposed.
The interaction with the quantum potential is interpreted
as an additional scattering mechanism. An advantage of
the presented approach is that the quantum algorithm
gradually turns into the classical MC algorithm when
Ve —+ 0. In this way the artificial separation of the simu-
lated device into quantum and classical domain, inherent
for the standard approaches, can be avoided. There is
no need from boundary conditions linking the two do-
mains. Moreover, the existing classical MC routines can
be reused and extended for quantum simulations.
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