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Abstract — Low quality meshes in three-
dimensional finite element diffusion simulations
often violate the discrete Minimax principle. An
indication of this shortcoming is the occurrence
of negative concentrations. We present an a pos-
teriori refinement algorithm to enforce the dis-
crete Minimax principle by locally refining the
mesh based on the last time-step. Two examples
of diffusion simulations where negative concentra-
tions could effectively be avoided by applying our
refinement algorithm are presented. A final ex-
ample is given to demonstrate the locality of the
algorithm.

I. INTRODUCTION

The physical diffusion process follows the entropy
principle, where the flow always takes place from regions
of high concentration to regions of lower concentration.
Over time an equilibrium concentration must appear.
This behavior is expressed as the (continuous) maximum
principle for parabolic differential operators. A physical
interpretation thereof states that the maximum must oc-
cur either at the initial time or at the boundary in case
mass flows from the outside. The dual minimum principle
states that also the minimum occurs at the initial time
or at the boundary. A compliance with the maximum
and minimum principle (Minimax principle) guaranties
that the maximum and the minimum will stay below
and above the initial values, respectively. Thus, posi-
tive concentrations at all time-steps during the simula-
tion are a necessary condition that the Minimax principle
is fulfilled. In a diffusion simulation with homogeneous
Neumann boundary conditions (no mass flux through
the boundary of the simulation domain) the mass (i.e.
dopant dose) is conserved, thus the maximum and mini-
mum must occur at the initial time.

It was shown that traditional Delaunay meshes (nec-
essary for two-dimensional diffusion simulations) are nei-
ther sufficient nor necessary for three-dimensional dif-
fusion simulations based on the finite element method
(1,2]. A mesh that is obtuse angle free satisfies the
Minimax principle, however, this is a too strong crite-
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rion. A weaker mesh criterion was derived by Xu and
Zikatanov [3]

n
Y b cotby > 0.0 (1)

k=1

Please refer to [4] for a comparison of different discretiza-
tion mechanisms with respect to the mesh criterion.

In a solution obtained from simulation the quality of
the mesh has a very strong influence on the discretiza-
tion error that is introduced. For the case of three-
dimensional finite element diffusion simulations a low
quality mesh can violate the discrete Minimax principle.
A violation of the Minimax principle always results in an
error in the dopant concentration dose. Semetimes this
is observed as negative concentrations that emerge dur-
ing the simulation. A fulfilled angle criterion of an edge
of the mesh guaranties a positive contribution to the re-
spective entry in the system matrix. We present an a
posteriori refinement algorithm to enforce the discrete
Minimax principle by locally refining the mesh based on
the last time-step. Two examples of meshes that result in
negative concentrations without applying our refinement
algorithm are given.

II. MESH REFINEMENT

The most important metrics of a mesh refinement al-
gorithm are locality and preservation of the quality of the
elements. Recursive and iterative refinement algorithms
for three-dimensional tetrahedral meshes were introduced
in [5] and [6], respectively. Both algorithms are based on
the intersection of an edge of a tetrahedron and result
in the very same (refined) tetrahedralization. They take
into account the history of refinement steps and work in
the following way:

o In afirst step all tetrahedrons for which an estimated
error exceeds a certain limit are marked for refine-
ment.

e Second, all marked tetrahedrons are split along their
refinement edge. Depending on the used algorithm



this split is either performed recursively or itera-
tively. Note that also elements that originally were
not marked for refinement can be refined.

The selection criterion for selecting the refinement edge
depends on the history of a given tetrahedron. The algo-
rithm defines three generations of refined elements, where
each generation is refined differently. The generations are
numbered in ascending order with the children of gener-
ation three belonging again to generation one. The algo-
rithm results in choosing the longest edge in many cases.
The above mentioned algorithms keep the refinement lo-
cal by refraining from refining the longest edge in some
cases. The iterative algorithm is more complicated to im-
plement, the recursive algorithm defines a hard criterion
on the initial tetrahedralization.

Our refinement algorithm is a simplification of the
above mentioned algorithms. It always recursively re-
fines the longest edge of the tetrahedron under consid-
eration. Figure 1, Figure 2, and Figure 3 illustrate the
algorithm. Figure I depicts the initial input mesh with

Figure 1: Initial tetrahe- Figure 2: Mesh after first
dralization. two recursion steps.

Figure 3: Final refinement result.

one tetrahedron marked for refinement (drawn in thick
lines). The edges el, €2, and e3 depict the longest edge
of every tetrahedron respectively. Both edges e2 and &3
are longer as edge el, thus the neighboring elements are
refined recursively. Figure 2 depicts the case after two
recursion steps. New tetrahedrons and edges (nl to n4)
were introduced by splitting along edges e2 and e3 of the

original mesh. Figure 3 depicts the final result of the re-
finement step. The tetrahedrons that result by splitting
the originally marked element are drawn in thick lines.
In this example a total of 6 new tetrahedrons was gen-
erated. The recursion is guaranteed to stop, although in
the worst case every tetrahedron of the mesh will be re-
fined. However, the application of the algorithm in two
and three dimensions showed very good locality which
justifies the usage of this simple refinement mechanism.

Since the longest edge of a tetrahedron implies the
biggest dihedral angle, one could suspect that a bisection
of the longest edge of any tetrahedron allows to make the
resulting mesh conforming to the angle criterion by an
iterative application. Unfortunately, this is not the case,
since geometrical similarities can not be generally avoided
for successive refinement steps even if all edges violating
the angle criterion are refined. Figure 4 depicts a simple

- SRR
Figure 4: Two-dimensional example of geometrical simi-
larities occurring during recursive mesh refinement.

s

two-dimensional case for such a geometrical similarity.
Although by bisecting the edge its length I is reduced
and thus it improves the angle criterion (1), the sum will
never become positive if it was originally negative for
that edge. Additionally, new edges might be introduced
that have an even larger negative sum as the worst edge
in the initial mesh. Thus, the bisection algorithms in
conjunction with the angle criterion can not generally be
applied as an operation to improve mesh quality.

III. A POSTERIORI MESH REFINEMENT

Since an edge refinement algorithm can not be used to
enforce the angle criterion (1) we use a different approach
to enforce the Minimax principle. Starting at time step
tg the simulation is performed as follows.

(1) Compute the actual time step. Keep values of pre-
vious time step.

{(2) The concentration of all dopant species is investi-
gated. If no negative concentrations are found save
the computed concentrations for later reference, in-
crease the time step, and continue at (1).

(3) Recursively refine 10% of the edges with the biggest
gradient.

(4) Take over values of previous time step and go to (1).

Although the algorithm is not (theoretically) guaran-
teed to terminate since it can not repair a violated angle
criterion, the practical application shows that it effec-
tively avoids negative concentrations.
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Iv. EXAMPLES

In the following examples we simulate the well-known
model equation for diffusion

ac :
5 =V-Dbve (2)

with homogeneous Neumann boundary conditions (mass
conservation, no flux to/from the outside), a backward
Euler time discretization and no lumping. For these ex-
amples in case of negative concentrations the Minimax
principle as pointed out in [4] is violated. As initial pro-
file a spherical Gaussian distribution with a high gradient
was chosen.

The first example (Figure 5 and Figure 6) depicts a
cube with 650 elements which was refined to ~ 3100 ele-
ments during the simulation. Both figures depict the re-
sult after the same time. Figure 5 depicts the unrefined
case. Negative concentrations emerged and the symme-
try of the Gaussian profile is violated. Figure 6 depicts
the result of the simulation with the refinement algorithm
turned on. Negative concentrations are not visible. The
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Figure 5: Original mesh - negative concentrations emerge
during the simulation. The symmetry of the spherical
Gaussian profile is violated.

second example was performed on a different geometry
(Figure 7 and Figure 8). The simulation started with
an initial number of tetrahedrons of =~ 1900 which were
refined to ~ 8000 tetrahedrons. The non-refined simu-
lation depicted in Figure 7 was stopped after 55 due to
the emergence of negative concentrations. The simula-
tion shown in Figure 8 depicts the case after 13s with
the refinement algorithm turned on. The last example
demonstrates the locality of the refinement algorithm.
Figure 9 depicts a part of a schematic transistor cell. We
aimed at refining the gate region. Figure 10 depicts the
final mesh after the refinement was performed.
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Figure 6: Adaptively refined mesh - negative concentra-
tions have not occurred. The symmetry of the spherical
Gaussian profile is reproduced.
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Figure 7: Negative concentrations occur already after 5s.

V. CONCLUSION

We developed a mesh refinement algorithm that is
based on the recursive bisection of the longest edge of a
tetrahedron. The refinement mechanism was used to per-
form an adaptive a posteriori mesh refinement that aims
at avoiding negative concentrations in three-dimensional
finite element diffusion simulations. The algorithm ef-
fectively avoided negative concentrations which indicates
that the discrete Minimax principle is fulfilled at any time
step during the simulation. In traditional ”brute force”
refinement. algorithms the mesh is refined such that the
maximuim gradient is a priori kept at a certain maximum
value. Compared to these refinement strategies that do
not take into account the result of a time-step the mesh
size was kept comparably small. We successfully ap-
plied our refinement algorithm to several examples, two
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Figure 8: Adaptively refined cuboid - negative concen-
trations have not occurred.

of which were presented. The developed refinement algo-
rithm is not limited to the presented a posteriori method.
Any error estimator can be used to select the tetrahe-
drons that need to be refined.

Mesh refinement that is based on the bisection of
edges can not generally be applied to improve the mesh
quality (angle criterion). Future research in this area will
thus be directed into mesh relaxation, where the points of
the mesh are moved around their initial position [7]. The
goal thereby is to find a position of the points where the
angle criterion is improved or even fulfilled. The move-
ment of the points is controlled by an optimization al-
gorithm which uses the angle criterion as target. Such
a relaxation step can then be used as an a priori quality
improvement step before the actual simulation is started.

Figure 9: Original coarse mesh.
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Figure 10: Final mesh. Refinement is restricted to the
gate region.
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