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Abstract— As the key requirement of a quan-
tum computer is the creation and exploitation of
entanglement, a detailed study of entangled states
has been carried out with reference to a solid-
state system based on coupled quantum wires.
A brief review of the basic gates is given first,
based on preliminary investigations, followed by
the analysis of electrons running along coupled
quantum wires. The particle dynamics has nu-
merically been simulated by means of a time-
dependent Schrédinger solver applied to a two-
particle system. Results are reported showing
entangled states created by means of suitable
gquantum-gate networks. Starting from these fun-
damental results, the complexity of some inter-
esting circuits is addressed, showing both the ap-
plication of the universal set of gquantum gates to
complex algorithms and the computational speed-
up achieved within the proposed implementation.

i. INTRODUCTION

In the present work we aim at investigating the solid-
state implementation of quantum networks based on co-
herent electron transport in coupled quantum wires. In
a previous work [1] the charge state of an electron run-
ning along two quantum wires has been adopted for the
definition of qubit. Subsequently, the design of one- and
two-qubit gates has been addressed in order to define
the universal set of quantum gates and, following [2], a
basic set of three (two single-qubit and one two-qubit)
transformations has been analyzed and simulated [3], [4].
More specifically, a single-qubit gate that realizes a wave
packet splitter S; has been designed by introducing a
coupling window between the wires, that enables a tun-
neling process of the wave packet; the second single-qubit
gate that realizes a phase shifter, Ry or Ry, is given by
the application of a potential barrier able to delay the
propagation of an electron along one of the two wires
{with label 0, or 1, respectively). Finally, the two-qubit
gate is constituted by a Coulomb coupler T, ie., a re-
gion where the wires belonging to adjacent qubits get
close enough to determine a mutual interaction. The
proposed physical system can be realized using intrinsic
GaAs within a GaAs-Al;Ga; ., As heterostructure or, al-
ternatively, silicon fully surrounded by SiOz. The qubit
states |0) and |1) are represented by the localization of
the electron wave function in one of the two wires: the
states are, respectively, the sum and difference of the two
lower eigenfunctions of the coupled wires potential with
respect to the quantized direction orthogonal to the wires

(double-well structure). The electron coherently propa-
gates along the longitudinal direction. Such a system is
within the reach of the mesoscopic semiconductors tech-
nology [5]. '

II. NUMERICAL SIMULATION OF
ENTANGLEMENT

In the previous works, the proposed system was de-
signed and tested by solving the 2D time-dependent
Schrédinger equation for single electrons with mutual
Coulombic interaction. Such architecture of the quan-
tum devices for the realization of the universal set has
been validated using a base of factorizable qubit states.
Within this approach, no entanglement between electrons
can numerically be simulated. In order to overcome this
limitation, a novel two-particle approach has been used.
In this work, the dynamics of the electrons running along
the wires has been solved by applying the Schrodinger
equation to the whole two-particle wave function. To
this purpose, the wires have been modeled as 1D devices
so that the spatial domain is only given by the prod-
uct of the wire lengths, this reducing the computational
effort. The pattern of the quantum wires has actually
been taken into account in the calculation of the electron-
electron interaction as the electron distance, which gives
its contribution in the Coulomb potential, as explained
in the following.

A. THEORETICAL ASPECTS

From a theoretical point of view, the effect of entan-
gled states can easily be deduced once the behavior of
the system on a given basis set is known, thanks to the
superposition principle. In order to study non-separable
(i-e., entangled) states by means of a numerical simu-
lation, the time-dependent Schrédinger equation for the
full two-particle wave function 1(x1, y1, 2, y2,¢) must be
solved. Such approach is rather expensive from a com-
putational point of view. To overcome this difficulty a
reduction of the dimensionality is required: a semi-1D
model for the quantum-wire structures has been used to
realize the numerical solver. Within the semi-1D domain,
the variables z1 and z2 take only the 0 or 1 values to in-
dicate the wires where the electrons are localized, leading
to the wave function iy, ¢, (#1,y2,%t). The latter is con-
stituted by four different components corresponding to
the four configurations of the x, and zo variables. The
coherent transport of the two electrons running along the
structure made of two qubits (i.e., four wires) has been
simulated by solving the following equation for the four
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different components of the wave function:

L 0
'Lh'éz'l,bmh:z (L‘l, yz;t) =

e
5 (5:!'}? + 5@) Py 2a (W1, V2, ) +

Vo, 2 (W Y2 W2y 0 (W1, 92, 8) (1)

where Vi 1. (y1,y2) is the electric potential experienced
by the two particles and m the effective mass in the
spherical-parabolic approximation. More specifically, the
geometry of the system is confained in the two-particle
potential V5, -, (11, ¥2), which consists of three terms: the
two potentials along the wires 0 and 1 of each qubit (U),
due to the device structure, and the Coulombic interac-
tion between the electrons:

e2/(4me)
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where Dy, », (1, y2) is the distance between point y; in
the x; wire of the first qubit, and point ¥ in the x5 wire
of the second qubit;

Doy 2y (41,¥2) = V[Pe: (1) = Pra 02) + 11 — 1] -

where pg, (:) gives the z coordinate of the z; wire corre-
sponding to the y; position along the wire.

Let us consider the 1D application of the three fun-
damental gates mentioned above. As far as the wave
packet splitter is concerned, it is not possible to sim-
ulate directly the wave-function splitting induced by a
coupling window, as the splitting comes from the trans-
verse dynamics whose description is lost. On the other
hand, the electron splitter S, is a single-qubit transfor-
mation and no entanglement is involved. Moreover, the
numerical simulations of the gate by a 2D Schrédinger
solver [4] show that, after the S, transformation, the
transversal component of the electron wave function is
still described, in each wire, by the ground state of an
infinite square well taken as the transverse initial condi-
tion. Thus, along the whole device, except for the re-
gions of the coupling windows, the transversal dynamics
can be neglected. The above considerations allow one
to include the effect of the S.(f) gate in the frame of
the semi-1D model by means of the application of its
corresponding matrix, like a “black-box” function. The
phase shifter Ry (R;) is obtained with a delaying po-
tential barrier inserted along a wire and incorporated in
the potential function Ug(y;) (U1(y:)). Finally, the con-
ditional phase shifter T is, among the three considered
here, the only two-qubit gate and, as a consequence, the
only one able to produce an entangled state. It is sim-
ulated by intreducing the description of the geometrical
shape of the wires along the transversal direction using
the pg, (y;) functions. To study the optimal geometry
for the quantum-wire system, able to perform the T(v)
transformation, a number of simulations have been per-
formed varying two geometric parameters: the length of
the Coulomb coupler and the distance between the cou-
pled wires [6].

B. SIMULATION RESULTS

The simulations have been performed for a Si-SiQ; sys-
tem, with a distance between the coupled wires of 10 nm

VIL@: (yl! y2) = Uy, (yl) + Umg (y2) +

and a distance between the two qubit systems of 60 nm.
The electrons are injected in the z; = 0 wires; the inijtial
wave packet is given by the product of two minimum-
uncertainty Gaussian functions with a standard devia-
tion ¢ = 18 nm and a momentum k corresponding to a
20 meV energy. Two different networks have been simu-
lated. The first one is shown in Fig. 1. The network is
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Figure 1.  Architectural scheme and quantum circuit
of the first network: S, represents the coupling-
window gate that realizes the wave-packet splitter.

constituted by three wave-packet splitters Sp(m/2). The
corresponding matrix reads:

s.e/)=25 (1 1) @

By applying the first two gates to the initial state [00),
one obtains the superposition of states:

% (100) + #01) + ¢]10}y — [11)) . (5)

Then the wavepacket experiences the third gate applied
to the second qubit, leading to the final state:

1 1 ..

7 7 (i0) — i) |1}, (6)
showing that the final state of the two-qubit system is
non-entangled. In Fig. 2 the numerical simulation con-
firms the result of (6), showing the propagation of the
two-particle wave packet over the four configurations.
The second network (Fig. 3} is similar to the previous
one, except for the gate T{x/2) realized before the third
splitter.In this case, the creation of an entangled final
state is achieved. The two-qubit transformation induced
by the T(#/2) gate is:

(401) — |11)) =

T(x/2) = (7
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The application of T to the superposition of states cre-
ated by the first two splitters (Eq. 5) gives the final en-
tangled state:

L. .
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Figure 2. Square modulus of the two-particle wave func-
tion at different time steps for the network of Fig.
1. The four graphs represent the ¥; x Y> domain
of the wave function {800 nm x 800 nm). Each
graph corresponds to a possible wire configuration.
The initial condition |00) at time 0 is given by the
wave packet shown in the lower-left corner of the 00
graph. The time step used for this representation
is 500 fs.

In Fig. 4, the numerical results for the second network
are reported with the same initial condition and time
step as in Fig. 2. The numerical integration of the final
electronic density for each configuration has been carried

out in order to compare the numerical result with the
analytical one. It is found that the wave-packet split-
ting is: 25% in both the |10) and ]11) states, 37% in the
|01} state, and 13% in the |00) state. This is in contrast
with equation (8), which predicts a 25%, 25%, 50%, and
0% splitting. The unexpected 13% is due to the defor-
mation effect of the Coulomb coupler, which causes an
undesired spreading of the wave function in the 10 wire
configuration.

III. COMPLEXITY OF QUANTUM
NETWORKS

As reported above, a number of runs have been carried
out on simple quantum networks. We have also inves-
tigated more complex algorithms from an architectural
point of view. More specifically, the complexity of the
quantum networks has been analyzed by taking into ac-
count the main delays affecting the computation, given
by the application of the two-qubit Coulomb coupler
T(¢) or, equally, the controlled-NOT gate. As a first fun-
damental network, the controlled-controlled-NOT {CC-
NOT) gate 7], which realizes the Toffoli gate, has been
addressed. The CCNOT gate negates the target qubit
if and only if the AND of the two control qubits is 1.
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Figure 3. Architectural scheme and quantum circuit of
the second network. T represents the Coulomb cou-
pler, formed where the inner wires get close enough
to give rise to a mutual interaction.
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Figure 4. Square modulus of the two-particle wave func-
tion at different time steps for the network of Fig.
3. The deformation effect of the T gate becomes
relevant at ¢ = 1500 fs.

In Fig. 8§, the CCNOT network is shown along with the
adopted symbols. As a second example, a quantum full
adder is shown in Fig. 6. It worth noting that, since the
physical system allows for the application of basic gates
only to adjacent qubits, one or mere exchange gates must
be suitably placed each time non-adjacent qubits are in-
volved in a transformation. This contributes to the net-
work complexity. In the proposed implementation the
exchange gate, that swaps the quantum information of
two adjacent qubits in order to consequently change their
position, is constituted by the cascade of three controlled-
NOT gates. By taking into account only the main delays
affecting the computation, given by the application of
the two-qubit elementary gates, the complexity of the
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Figure 5. Quantum network for the controlied-
controlled-NOT gate.
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Figure 6. (a) Logic network for the quantum full adder.
(b) Symbol adopted for the exchange gate. (c) Ar-
chitectural scheme for the quantum full adder. The

bottom line indicates the number of T gates for
each step.

quantum full adder corresponds to 22 gates. The analy-
sis of a quantum network that realizes the quantum fast
Fourier transform (QDFT) has already been carried out
in the literature as a first important example of quan-
tum algorithm [8]. Within the adopted physical system,
a straightforward realization of the network has been ob-
tained. The architectural scheme of the QDFT network
is shown in Fig. 7. It is worth noting that the final bit-
reversed configuration, which characterizes the usual fast
Fourier transform algorithm, has been avoided by means
of the applied exchange gates. Starting from the analysis
of a 4-qubit structure, it is easy to generalize the net-
work to L qubits, obtaining a complexity corresponding
to 4 % {2L — 3) gates. The exponential speed-up that can
be achieved in terms of computational time by applying
the quantum DFT circuit is obtained by exploiting the
massive quantum parallelism in the preparation of the
initial state: in this way, one can calculate the DFr ap-
plied to a superposition of states instead of a single state,
and simultaneously calculate the whole set of coefficients.
This transformation is applied to most of the quantum
algorithms shown in the literature [7].

Figure 7. Quantum discrete Fourier transform:
schematic network for a 4-qubit QDFT. The H gate
is a Hadamard transformation [2],the controlled
gate is a conditional phase shifter whose angle is
indicated by the label, the Excc gate is used to
suitably swap the qubit positions. |A) is the input
state of the L-qubit register, and |C) is the set of
states of the final superposition that constitutes the
DFT coefficients.
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