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Abstact —~ We investigate the electron and hole
energy states for ellipsoidal and rectangular torus-
shaped InAs/GaAs semiconductor quantum rings in
an external magnetic field. Our realistic three-
dimensional (3D) model construction is based on: (i)
the effective mass Hamiltonian in non-parabolic
approximation for electrons, (if) the effective mass
Hamiltonian in parabelic approximation for holes, (iii)
the position- and energy-dependent quasi-particle
effective mass approximation for electrons, (iv) the
finite hard wall confinement potential, and (v} the
Ben Daniel-Duke boundary conditions. To solve this
3D nonlinear problem, we apply the nonlinear
iterative method to obtain self-comsistent solutions.
Due to the penetration of the applied magnetic field
into torus region, we have found a non-periodical
oscillation of the energy band gap versus magnetic
fields between the [owest electron and hole states. The
oscillation is shape- and size-dependent. The result is
useful to describe magneto-optical properties of the
nano-scale quantum rings.

1. INTRODUCTION

Due to the unique electronic and optical properties,
the semiconductor nanostructures have been of great
interests and attractive for quantum computing, photonic
device, and lasers applications [1-11]. Both of the micro-
and meso-scopic metallic semiconductor rings have
attracted much attention and the development of
nanoscopic semiconductor rings bridges significantly the
gap between nanoscale quantum dots and semiconductor
rings. For semiconductor nanoscale rings, the trapping a
single magnetic flux and unusual excitation properties for
such non-simply connected nanostructures have vary rich
physical characteristics. The self-assembled InAs/GaAs
nanoscale quantum ring fabricated by solid-source
molecular-beam epitaxy has become a well-established
technique for high-quality fabrications. The fabrication
progresses provide us an alternative to construct
nanoscale systems with a wide range of geometries
including various nanoscale InAs/GaAs semiconductor
rings [1-5]. The ring height of these rings can be in the
regime of 2 — 5 nm, and the inner radius is in the range of
5 -~ 30 nm. The outer radius varies from 10 — 70 nm.
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There are many theoretical works has been reported
for studying the electronic structure of the InAs/GaAs
nano-rings. However, most of these theoretical quantum
ring models only assume electrons moving in a 1D or 2D
region confined by a parabolic potential [1-3]. These
proposed 1D/2D models do not take some important
phenomena into consideration, such as (i) effects of the
inner or outer radius of the nano-ring, (ii) the finite hard
wall confinement potential, and (iii) the effect of non-
parabolic band approximation for the electron effective
mass. With our derived 3D model, we study electron and
hole energy states for a realistic 3D model of InAs/GaAs
quantum rings comprehensively. We investigate and
compare the electron and hole energy states for
ellipsoidal and rectangular torus-shaped InAs/GaAs
semiconductor quantum rings under an applied external
magnetic field. Without any fitting parameters, we have
for the first time found that the dependence of nano-
rings’ energy band gap with respect to an external
magnetic field shows a non-periodical oscillation.

In this study, the theoretical model formulation
includes: (i) the effective mass Hamiltonian in non-
parabolic approximation for electrons, (ii) the effective
mass Hamiltonian in parabolic approximation for holes,
(iii} the position and energy dependent quasi-particle
effective mass approximation for electrons, (iv) the finite
hard wall confinement potential, and (v) the Ben Daniel-
Duke boundary conditions. To solve this 3D nonlinear
problem, we apply the nonlinear iterative method to
obtain self-consistent solutions [6-9]. The computer
simulation technique for nanostructures simulation has
been proposed by us in our recent works. We find a non-
periodical oscillation of the energy band gap between the
lowest electron and hole states as a function of external
magnetic fields. The result is useful in describing
magneto-optical properties of the nanoscale quantum
rings.

H. A 3D QUANTUM RING MODEL

As shown in Fig. 1, two different rings, ellipscidal
and rectangular torus-shaped quantum rings, are
investigated in this work. From the fabrication point of
view, the ellipsoidal torus-shaped quantum ring is more
realistic than the rectangular torus-shaped one [2,11]. We



compare their energy state transitions under an applied
magnetic field. To model the electronic states, we
consider quantum rings with the hard-wall confinement
potential that is induced by a discontinuity of conduction
band edge of the system components [6-9]. In an applied
magnetic field B the effective mass Hamiltonian for
electrons (i = e) and for holes (i = 4) is given in the form
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where [T = -i k V, + eA(r) stands for the electron
momentum vector, V] is the spatial gradient, A(r} is the
vector potential (B = curld ), s the vector of the Pauli
matrixes, and m4E,¥) and g(E,r) are the electron (hole)
effective mass and Landé factor, respectively. The
expressions of m{E,r) and g{E,r) are [6-9]
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Figure 1: (a) Ellipsoidal torus-shaped quantum ring. (b)
Rectangular torus-shaped quantum ring,

The hard-wall confinement potential inside the ring
region (material I) and environmental crystal matrix
(material 2) can be presented as: ¥; (r) = 0 for all r in
material I and V{r} = V; for all r in material 2, V(r) is

the confinement potential, E (r) and A(r) are the

position dependent band gap and spin-orbit splitting in
the valence band, P is the momentum matrix element, m,
and e are the free electron elementary mass and charge.
The Ben Daniel-Duke boundary conditions for the
electron wave functions W(r) are given by [6-9]

¥ (r) =¥, (r,) and
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where r, is the interface between the material 1 and
material 2 of the nanoscale rings.

I SIMULATION METHODOLOGY

For an applied magnetic field, to compute electron
and hole energy states as well as the energy gap with
respect to the distinet two quantum rings self consistently,
we apply the nonlinear iterative method [6-9] to calculate
the self-consistent solution. This simulation technique for
nanostructures simulation such as quantum dot and
quantum ring was propesed in our recent works [6-91.
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Figure 2: Nonlinear iterative method for quantum ring
energy states self-consistent calculation.

As shown in Fig. 2, when the magnetic filed is
specified, this solution scheme consists of steps: (i} set
initial energy; (ii) compute electron effective mass
through Eq. (2); (iii) compute the Landé factor through
Eq. (3); (iv) solve the corresponding Schridinger
equation of Eq. (1); and (v) update the newer energy and
back to step (ii). The iteration will be terminated when
the computed energy is converged to a specified
tolerance error. To obtain the complete numerical
solution of the Schrodinger equation in step (iv), a finite
difference method (the so-called finite box method) with
nonuniform mesh technique is applied to discretize the
Schrodinger equation with its boundary conditions,
where the corresponding algebraic eigenvalue problem is
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constructed. The cigenvalue and eigenfunction of the
algebraic eigenvalue problem are computed with QR and
inverse iteration methods [8,9]. It takes about 10-12
iteration loops to reach final convergent result for all 3D
InAs/GaAs quantum ring simulations. Base on the
achieved monotone convergence results, our numerical
experiences confirm the nonlinear iterative method is an
efficient and robust solution methodology for nanoscale
quantum ring simulation.

IV. RESULTS AND DISCUSSION

For both ellipsoidal and rectangular torus-shaped
rings, we first investigate the electron and hole energy
states dependence on an external perpendicular magnetic
field B. The ring height and ring width is fixed at 2.4 and
24 am. The ring size used in our simulation is chosen
from fabrication results. The ring size variation is in the
regime of experimental data. The applied magnetic field
induces a transition among energy configurations with
the lowest electron (hole) energy state corresponding to
the angultar momentum / = 0 (spin o = +1/2), the lowest
state of / = -1, the lowest state of / = -2, and so on.
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Figure 3; Electron energy versus magnetic field for eilip-
soidal torus-shaped InAs/GaAs nano-rings
with inner radius equals to 8 (left figure) and
18 (right one) nm, respectively.
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Figure 4: Hole energy versus magnetic field for ellip-
soidal torus-shaped InAs/GaAs nano-rings
with inner radius equals to 8 (left figure) and
18 (right one) nm, respectively.

Fig. 3 shows the electron energy states of the
ellipsoidal torus-shaped ring with ring inner radius equals
to 8 and 18 nm, respectively. We found the non-
periodical transition of energy states depends on the
inner radius. For the ring with larger inner radius, the
crossing point of the transition occurs at lower magnetic
fields. Fig. 4 presents the similar results for holes with
difference inner radius. In our simulation, the parameters
are summarized here. For InAs, the energy gap Ey; is

0.42 eV, A, is 0.38 eV, my(0) = 0.024m;. For GaAs, we

set By, = 1.52 eV, A, = 0.34 ¢V, and my(0) = 0.067m,.
The band offset parameter is taken as ¥p=0.77 eV.

To investigate the shape effects for the non-
periodical oscillation of the nano-ring, we further
simulate the rectangular torus-shaped rings with inner
radius 8 and 18 nm, respectively. Figs. 5 and 6'show the
simulated electron and hole energy for inner radius
equals to 8 and 18 nm, respectively. Comparing with the
results of ellipsoidal torus-shaped ring, we found the
electron energy states are strongly controlled by inner
radius. For ring with R, = 8 nm, the rectangular torus-
shaped ring requires larger magnetic field to modify the
electron lowest energy transition.
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Figure 5: Electron energy versus magnetic field for rect-
angular torus-shaped InAs/GaAs nano-rings
with inner radius equals to 8 (left figure) and
18 (right one) nm, respectively.
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Figure 6: Hole energy versus magnetic field for rect-
angular torus-shaped InAs/GaAs nano-rings
with inner radius equals to 8 (left figure) and
18 (right one) nm, respectively.
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For these nanoscale rings under an applied magnetic
flux, we found the crossing point occurs between [ = 0
and / = -1 states and between I = -1 and / = -2 states
clearly. The non-periodical oscillation of electron and
hole energy does not obey the well-known rule {&./@,; =
n, where @, = 7(Ryu + R,)'B is a typical applied
magnetic flux, and » is an integer number) for various 1D
models. For example, as shown in Fig. 3, the first
fracture @, ~ 0.65d, is larger than /2, where dy is the
quantum of magnetic flux (The commeonly quoted value
@y/2 follows 1D approaches [10]). Our result has good
agreement with experimental measured data [10). Fig. 7
is the contour plots of wave functions distribution for
different shape rings with R, =8 nmat B=0T.
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Figure 7: Contour plots of wave functions for rectangular
(left figure) and ellipsoidal (right one) torus-
shaped rings with R;, =8 nmatB=0T.
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Figure 8: The energy gap vs. magnetic field for the ellip-
soidal torus-shaped InAs/GaAs nano-ring,

We have calculated and analyzed the electron and
hole energy states transitions for two ring shapes with R;,
= 8 and 18 nm. With these computed data, we perform
the energy band gap calculation. Gur calculation is based
on the formula AE(B) = Eg(B) + E(B) + E,p, where the
energy band gap E,. and E, are the ground state energies
for electrons and holes, and E, is the energy gap of the
ring, respectively. The calculated results for InAs/GaAs
rings with Ry, = 8 and 18 nm are shown in Figs. 8 and 9.
The AE(B) oscillation is non-periodical and @, >@y/2.
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Figure 9: Energy gap versus magnetic field for the rect-
angular torus-shaped InAs/GaAs nano-ring.

V. CONCLUSION

A three-dimensional quantum ring model and a
unified computational technique have been applied to
study the energy band gap transition of InAs/GaAs rings.
With the developed simulator, we have found the non-
periodical osciilation of the energy band gap for a 3D
semiconductor nanoscale quantum ring in an external
magnetic field, and the oscillation of electron and hole
energy is non-periodical and does not obey the
conventional 1D rule. We note here that all calculations
were without using any fitting parameters to calibrate the
results, The modeling, numerical method, and study
presented here clarify principal dependencies of energy
states on magnetic field, ring shape, and size. It is useful
to describe magneto-optical properties of the nano-scale
quantum rings. The InAs/GaAs semiconductor nanoscale
rings provide abundant applications in quantum
compating, photonic device, and lasers applications.
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