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Impact of electron heat conductivity on electron energy flux
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Abstract—Equations in the hydrodynamic model were
evaluated by direct calculation of the drift, diffusion, and
scattering terms obtained by separating the metion of
particles in Monte Carlo simulations. It was confirmed that
the conservation equations for momentum and energy were
constructed adequately. However, it was found that an
artificial operation was necessary for describing the energy
flux equation. Namely, the parameter of the
Wiedemann-Franz law for heat conductivity could be
chosen so that the underestimations of the drift and
diffusion terms in the energy flux equation cancelled each
other. It is shown that this parameter influences the
electron temperature in a 50-nm gate nMOSFET.

I. INTRODUCTION

The hydrodynamic model (HDM) [1] has been uvsed to carry
out simulation for velocity overshoot and hot carrier effects. In
most cases, the system of governing equations in the HDM is
constructed by truncating higher order of the divergence term in
the energy flux equation {2]-[S] and adjusting the parameter of
the Wiedemann-Franz law for heat conductivity to reproduce
the physical values obtained by the Monte Carlo (MC)
simulation [5]. The validity of the equations has been checked
by comparing distributions of physical values such as velocity
and energy with those obtained by the MC simulation [6]-[8].
However, the physical values are affected by all terms of drift,
diffusion, and scattering. Therefore, it is difficult to distinguish
whether or not the expression for each term in the HDM is
complete.

In this paper, each term of the equations in the HDM is
calcufated independently by separating the motion of particles
in MC simulations. A suitable parameter of the
Wiedemann-Franz law is evaluated, and it is shown that this
parameter can significantly affect the electron temperature,

. DIRECT MC CALCULATICN OF THE BOLTZMANN TRANSPORT
" EQUATION TERMS

Fig. 1 shows a schematic of the direct MC calculation using
changes in a physical value g for each particle in a volume V.
The direct MC calculation is performed for the divergence, drift
and scattering, which are the three terms in the moment of the
Boltzmann transport equation (BTE) under the steady state
condition. The divergence term is obtained by summing all g 4

»

inflow and g ;P“ outflow, the drift term is obtained by summing
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all the changes Ag?® i due to the electric field, and the scattering
term is obtained by summing all the changes Ag;ﬂ.f due to

scattering. The divergence term corresponds to the diffusion
term in the conservation equation.

Direct calculation of each term
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Fig. 1 Schematic of the direct MC caiculation of each term in the
moment of the Boltzmann transport equation. Each term can directly
be obtained by separating the motion of the particles.

102
10 nm L=50nm 0 am

?1020
& ; a* n n*—v
= %
=}
awls
=
2
£ 1018

1017,

0 10 20 30 40 50 60 70
X-direction {nm)

Fig. 2 Impurity distribution in the simulated structure. The inset is a
schematic of the device structure.

MC simulations were performed for the n'nn* structure
shown in Fig. 2. Figs. 3 and 4 show the distribution of the terms
in the conservation equations for momentum and energy under a
steady state condition of V = 0.5 V:
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where n is the electron density, m the effective mass, ¥ ', the
average velocity of electrons, kp the Boltzmann constant, T the
electron temperature, g the elementary charge, ¢ the potential,
7,, the momentum relaxation time, § the energy flux, w the
average energy of electrons, wy the energy corresponding to the
lattice temperature, and T, the energy relaxation time.
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Fig. 3 Distribution of each term in the momentum comservation
equation. Each term is adequately expressed by Eqn. (1).
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Fig. 4 Distribution of each term in the energy conservation equation.
Each terin is adequately expressed by Eqn. (2).

The symbols in the figures indicate points obtained by the
direct MC calculation outlined in Fig. 1. The momentum
conservation equation is derived by substituting g=V¥ in the
moment equation described in Fig. 1, where v is the velocity of
each electron and i, =< ¥ » . The energy conservation equation

is derived by substituting g=&, where & is the energy of each
electron and w = <& >. The solid lines are obtained by

substituting the physical values of n, 7,, w, and§ obtained by

the MC simulations into Eqns. (1) and (2). The solid lines agree
well with the direct MC calcutation. Therefore, the conservation
equations for momentum and energy sufficiently describe the
transport of momentum and energy. Note that the scattering
terms are used to extract the relaxation times as shown in Fig. 5.
As is usually expected, the energy relaxation time is larger than
the momentum relaxation iime and the energy fiux relaxation
time is almost same as the momentum relaxation time.
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Fig. 5 Distribution of the relaxation times extracted from the scattering
rate of physical values. The relaxation times for the energy flux and
mementum are almost the same.

HI. ENERGY FLUX EQUATION
The distributions of the terms composing the energy flux
conservation equation can be obtained as shown in Fig. 6. In this
case, g =¥v?, and S=n<vv®>. The drift and divergence
terms for the x-direction are derived as follows:
ay
ax

in(mv,fx +w+k,T)
m

%(< W2 VI +v0) > +dvl <yl )
where v, is the x-component of the drift velocity, , the
thermal velocity, and v, the x-component of . The practical

equation for § can be derived by introducing the relaxation
time 7 and neglecting all the drift energy mii? /2 terms:
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where g is extracted from the scattering term as shown in Fig. 5,
and ¢ the parameter of Wiedemann-Franz law. In many cases,
of ¢=0 has used because

the assumption been

Scharfetter-Gummel discretization can be carried out easily,
whereas the value of ¢ = -2 has been determined by Aluru et al.

[5] to reproduce MC results.
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Fig. 6 Distribution of each term in the energy flux conservation
equation,
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Fig. 7 Distribution of the drift term in the energy flux equation. The
drift term is underestimated because the drift energy is ignored in the
expression.
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Fig. 8 Influence of the parameter of the Wiedemann-Franz law on the
divergence term of the energy flux equation, Ignoring the parameter,
that is, setting € = 0, causes unnatural undershooting in the high
electric field region, whereas underestimation appears in the whole
region when T is set to -2.

The present direct MC calculation reveals the roles of each
term in Eqn. (3). Fig. 7 shows the distribution of the drift ferm in
Eqn. (3). The drift term in the above equation is underestimated
relative to the direct MC calculation because all the drift energy
components are ignored. Fig. 8 shows the distribution of the
divergence term. The result with ¢ =0 shows an irrelevant

undershooting in the high field region, whereas the result with
¢ = -2 underestimates the divergence term in the whole region,
However, as shown in Fig. 9, the energy flux obtained by the
direct MC calculation is reproduced well by the expression with
¢ = -2. This is because, fortunately, the underestimations in the

drift and the divergence terms are cancelled in Eqo. (3).
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Fig. 9 Distribution of the energy flux for L = 50 nm. The practical
equation reproduces the result of the direct MC calculation.
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Fig. 10 Distribution of electron temperature at the substrate surface of
a 50-nm gate nMOSFET, The clectron temperature is significantly
affected by the parameter of the Wiedemann-Franz law.

Fig. 10 shows influence of the parameter of the
Wiedemann-Franz law on the electron temperature in a 50-nm
gate  nMOSFET, calculated by  extending the
Scharfettez-Gumme} discretization for Egn. (3). The parameter
value of ¢=-2 causes a reduction of the clectron heat

conductivity. Therefore, the temperature is concentrated more
at the drain depletion region. 1i is expected that the reduction of
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heat conductivity will prevent unnatural heat delays and
extreme velocity spikes in the high field region.

Fig. 11 shows the distribution of the energy flux for the case
of L = 100 nm. The practical equation is thus also applicable to
longer channel devices. However, Fig. 12 indicates that the
practical equation with § = -2 might fail in sub-50-nm devices,
where the ballistic motion increases. Under such conditions, a
higher order equation or a Monte Carlo simulation should be
used to predict the carrier temperature more accurately.
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Fig. 11 Distribution of the energy flux for L = 100 nm. The practical
equation reproduces the result of the direct MC calculation.
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Fig. 12 Distribution of the energy flux for L = 25 nm, The practical
equation does not reproduce the result of the direct MC calculation.
Conservation equations of a higher order or MC simutations might be
necessary for sub-50-nm lengths.

IV. CONCLUSION

Each term of the equations in the HDM was calculated by
separating the motion of particles in MC simulations to evaluate
the validity of the expression for the term independently. It was
confirmed that the equations for conservation of momentum and
energy reproduce the results of the direct MC calculation.
However, it was revealed that the underestimation of the drift
term in the energy flux equation has to be canceled by the
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underestimation in the diffusion term to reproduce the
distribution of the energy flux obtained by the MC simulation.
The distribution of the diffusion term in the energy flux was
significantly affected by the parameter of Wiedemann-Franz
law for heat conductivity. It was also found that an adequate
expression for the energy flux is indispensable for accurate
prediction of the electron temperature.
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