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Abstract -We present an efficient simulation
method for the extraction of frequency dependant
interconnect impedances. Qur method is based on a
symmefrical (A,T) system approximated by the use of
edge finite elements, It doesn’t need gauge condition
and the matrix system has good convergence
properties.

Qualitative results on eddy current and
return current effects are presented and a first
numerical validatien is made,

L. INTRODUCTION

Due to the increasing clock frequencies and the
decreasing sizes, the evaluation of the electric parasitic
effects becomes essential for the reliability of
microelectronic circuits. After investigating the 3D
calculation of capacitance matrices using a very efficient
method [1], we now focus our work on the extraction of
frequency dependant impedances of interconnects. At the
present time, the most used methods are based on an
integral equation approach where the unknowns are the
current density “J” and the electric potential “V”. The
main advantage is to reduce the problem inside the lines,
but these methods are known fo lead to dense and non
symmetrical matrices. Moreover they have to handle the
current conservation constraint “div J=0" that is reputed to
give numerical problems. Different methods have been
developed to overcome these difficulties ([21(31{47).

Another way to solve this problem is to use a volume
finite element method coupling two electromagnetic
unknowns on the whole domain. Different choices are
available [5], but the (A, V) formulation is probably the
most used(A is the magnetic vector). To obtain the unicity
of (A,V) we need to add a gauge condition on “div A”.
When we use continuous nodal finite elements for A,
gauging is an obligation to avoid numerical difficulties [6].

Recently, some authors proved that the use of edge
“Nedelec-Whitney” elements allows to avoid gauging on
vector magnetic potential ([91[6]). Even if the matrix is
singular, the conjugate gradient method may converge [8]
but in this case the convergence of the method is very
sensitive to the approximation of the right hand side (RHS)
of the system. To obtain a consistent system, the RHS need
to be in the range of the “curl curl” matrix{8}[5]. An other

advantage is that the edge elements naturally take into
account the normal discontinuity and the convenient
boundary conditions on A [5].

IL. (A,T) FORMULATION

From the previous considerations, we choose to
express the problem using the (A, T) formulation given in
[9], where A is the vector magnetic potential defined in the
whole domain (VxA=B) and T is the vector electric
potential such as ,inside the conductor regions, we have the
relation “VxT=J",. The system is

VXVXA~-uVXT =0 in the whole space

) {V X0 'VXT+ joVXA =0 inside conductor
where o is the pulsation and ¢ the conductor’s
conductivity,

Approximation of (S) may give a symmetrical
system. Using A and T as unknowns the terms of the
system intrinsically have divergence equal to zero, then
this formulation avoid the use of gauge constraints that
may penalise the convergence.

I1.1 Conditions on T

The vector electric potential is separated in two

parts (T=To+ T ). Ty is the source electric potential such as
Jo=VxTy is the direct current (DC} inside the conductor. Jo
is obtained by solving the Laplace equation inside the
conductor with scalar electric potential as unknown. Jp is
chosen to generate an imposed current I,.

To must be defined in the whole space. TO may be
chosen to be null in the Z direction (T0=[Tq;,,Toy, 01){10]
and Ty =0 on top of the structure. With these conditions Ty
is easy to obtain on a regular grid using the relations:

T, G, ., b, =T, G, J.k+Dh, +J, G, j. O Ay,
T, G .0k, =Ty, G, j.k+Dh,, —J o, G, j.OR R,
where (hy, hy,, hy,) are the steps of the grid.
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Most of the time, the structure to be considered is
a truncated part of a conducting region, with given
conditions on electrode parts. In this case, our method is
equivalent to impose a return current path from the
electrodes to the bottom of the grid. In figures 1.a, 1.b, we
present an illustration on a single line example. J, is first
calculated inside the line with given potential conditions on
the electrodes EQ, E1. Then T, is calculated in the whole
space with the previous method.
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Fig.1.a : DC Density current J0 inside a single line

IILGROUND PLANE

When the conductor structure is in the free
space, we choose the bottom of the grid domain far enough
to have no influence on the results. When the structure set
on a substrate or a conducting support, we may couple the
previous problem in the dielectric domain with another in
the conducting support. By this way, the return current in
the support may be calculated. In figures 2.a, 2.b, 2.c we
present the real part of the current density of the return
current inside a metal plane underneath a single line. In
high frequency domain, an attraction by the line may be
observed(fig.2.c).

-

Fig.2.a: A single copper line (1p width) set on a copper plane (
plane-line distance is 2)4).
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Fig 1.b: VXTG derived from JO of fig. 1.a

The second part of the vector electric potential
T is defined such as its total current is zero. The boundary

conditions expressing that are “Txn=0"on conductors
frontiers, where n is the normal vector.

I1.2 Boundary conditions on A

A is calculated on a parallelepiped box. On the
boundaries of this box, we assume that magnetic field is
the same than in the DC case. We use the “Biot-Savart”
law on the DC to set the boundary conditions:

J‘ Vﬂo(Q)

A
4] o ¢

where P belongs to the box boundaries

Fig 2.b: Geometry of fig.2, Frequency 1GHz:
Real part of the return density current inside the metal plane.
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Fig.2.c: Geometry of fig.2, Frequency IOGHz
Real part of the return density current inside the metal plane.
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IV. MESHING

We use edge elements to approximate both A and T[9].
As the first equation of (S) is defined in the whole space,
we use a regular 3D grid to approximate the magnetic
potential A. Then assembling the rigidity matrix associated
1o “VXVXA” is not necessary. T is calculated on 2
unstructured mesh that models the inside of the conductors.
A coarser grid for A than for T is used. The projection
method from one grid to the other save the energy of the
fields and the symmetry of the system. examples presenting
the conductor mesh approximating the electric potential
and the regular grid approximating the magnetic potential
are in figures 3, 4.

V. RESULTS

A first result on a induction loop set on a ground

plane(fig.5) is presented. One end of the loop is connected
to the ground plane and we calculate the impedance
(R+jwl) at the other end. Geometry is not realistic, but this
test case clearly shows the eddy current effects.

Fig.6 and Fig.7 present comparative results

between our work and the program Fasthenry[3](freeware

version 3.0). The inductance and the low frequency

resistances are very close. High frequency resistances are

higher in our program.
On this test case Fasthenry and our program have
comparable computation times. Actually, our program is

more performant when the geometry is more complex
(Fasthenry becomes very expensive when the number of
discretization filaments is important). Moreover, our
program is more efficient to deal with low conductive and
- - —— s thick substrate or structures with “no filament” shapes.
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Fig.3 : Zoom on a plane view of the fig.5 structure :
Real part of the current density at 20GHz.
The conducting mesh and the regular grid are drawn .
Eddy current effects are visible.

U=(R+joL) 1
= —
7 Fig.5 : Test case: Inductance loop on a ground plane.
Lines and ground plane are Copper ( 6=50 10° $/m) , lines are S pm width, 1
o Jum height. Lower level of the loop is 4 um far from ground plane, Higher
. level is 6 um far from the plane. Ground plane is 80 pum side and 1um thick.
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Fig.4 : Zoom on a plane view of the fig.5 structure: 1 - F:;t::; A
Real part of magnetic potential at 20GHz. 0.5 Y
The conducting mesh and the regular grid are drawn . a i 1
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Fig .6 : Resistance of the test case of fig.5
Comparisons with Fasthenry
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Fig .7 :Inductance of the test case of fig.5
Comparisons with Fasthenry

V1. SUMMARY AND CONCLUSION

A finite element method based on a A-T
formulation and a edge approximation is presented.
This formulation has good convergence properties due
to the absence of gauge conditions. Two separated
grids are used to approximate the fields which make the
meshing easier and increases the software
performances.

First numerical results have been presented
that are going to be extended with measurement
comparisons in multiturns spiral inductors.
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